Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr 14;16(14):6544-9.
doi: 10.1039/c4cp00093e. Epub 2014 Mar 3.

Molecules in the mirror: how SERS backgrounds arise from the quantum method of images

Affiliations

Molecules in the mirror: how SERS backgrounds arise from the quantum method of images

Stephen M Barnett et al. Phys Chem Chem Phys. .

Abstract

The Raman coupling of light to molecular vibrations is strongly modified when they are placed near a plasmonic metal surface, with the appearance of a strong broad continuum background in addition to the normal surface-enhanced Raman scattering (SERS) peaks. Using a quantum method of images approach, we produce a simple but quantitative explanation of the inevitable presence of the background, due to the resistive damping of the image molecule. This model thus suggests new strategies for enhancing the SERS peak to background ratio.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Representation of method of images approach with (a) real molecule interacting with a plasmonic metal surface replaced by (b) a real-molecule–image-molecule interaction. (c) Dominant molecular vibrating bond of real and image molecules now represented by dipoles. Real and image dipoles separated by distance, 2d, and ω is the exciting laser field.
Fig. 2
Fig. 2. (a) Stokes emission when the emitted Raman photon has a lower frequency than the pump laser ω, and (b) anti-Stokes emission when the emitted Raman photon has a higher frequency than the pump laser. (c) Experimental SERS spectrum from a monolayer of benzenethiol on KlariteTM showing typical SERS peaks and background for Stokes and antiStokes scattering.
Fig. 3
Fig. 3. Modeled spectrum Stokes spectrum of a broad background peak under a weaker and narrow Raman line, from (5) with , γ ν = 1 cm–1 and Γ ν = 100 cm–1.
Fig. 4
Fig. 4. Modeled Stokes spectra from eqn (5) with varying values of γ ν and Γ ν using held constant, for (a–c) Γ ν = 100 cm–1 and (a) γ ν = 0.01 cm–1, (b) γ ν = 1.5 cm–1, (c) γ ν = 10 cm–1. (d and e) γ ν = 1 cm–1 and (d) Γ ν = 1 cm–1, (e) Γ ν = 20 cm–1, (f) Γ ν = 40 cm–1.
Fig. 5
Fig. 5. Magnified image dipole for negative curvature roughness.

Similar articles

Cited by

  • Anomalous Spectral Shift of Near- and Far-Field Plasmonic Resonances in Nanogaps.
    Lombardi A, Demetriadou A, Weller L, Andrae P, Benz F, Chikkaraddy R, Aizpurua J, Baumberg JJ. Lombardi A, et al. ACS Photonics. 2016 Mar 16;3(3):471-477. doi: 10.1021/acsphotonics.5b00707. Epub 2016 Feb 8. ACS Photonics. 2016. PMID: 27077075 Free PMC article.
  • Extreme Electron-Photon Interaction in Disordered Perovskites.
    Kharintsev SS, Battalova EI, Matchenya IA, Nasibulin AG, Marunchenko AA, Pushkarev AP. Kharintsev SS, et al. Adv Sci (Weinh). 2025 Feb;12(5):e2405709. doi: 10.1002/advs.202405709. Epub 2024 Oct 2. Adv Sci (Weinh). 2025. PMID: 39356054 Free PMC article.
  • Present and Future of Surface-Enhanced Raman Scattering.
    Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Langer J, et al. ACS Nano. 2020 Jan 28;14(1):28-117. doi: 10.1021/acsnano.9b04224. Epub 2019 Oct 8. ACS Nano. 2020. PMID: 31478375 Free PMC article.
  • Seeing Is Believing: How Does the Surface of Silver Nanocubes from a Polyol Synthesis Change during Sample Collection, Washing, and Redispersion.
    Huang Q, Xia Y. Huang Q, et al. Langmuir. 2025 Aug 5;41(30):20272-20279. doi: 10.1021/acs.langmuir.5c02610. Epub 2025 Jul 22. Langmuir. 2025. PMID: 40694844 Free PMC article.
  • Comparison of Free-Space and Waveguide-Based SERS Platforms.
    Turk N, Raza A, Wuytens P, Demol H, Van Daele M, Detavernier C, Skirtach A, Gevaert K, Baets R. Turk N, et al. Nanomaterials (Basel). 2019 Oct 1;9(10):1401. doi: 10.3390/nano9101401. Nanomaterials (Basel). 2019. PMID: 31581547 Free PMC article.

References

    1. Willets K. A., Van Duyne R. P. Annu. Rev. Phys. Chem. 2007;58:267–297. - PubMed
    1. Qian X., Peng X.-H., Ansari D. O., Yin-Goen Q., Chen G. Z., Shin D. M., Yang L., Young A. N., Wang M. D., Nie S. Nat. Biotechnol. 2008;26:83–90. - PubMed
    1. Kneipp K., Wang Y., Kneipp H., Perelman L., Itzkan I., Dasari R., Feld M. Phys. Rev. Lett. 1997;78:1667–1670.
    1. Porter M. D., Lipert R. J., Siperko L. M., Wang G., Narayanan R. Chem. Soc. Rev. 2008;37:1001–1011. - PubMed
    1. Stuart D. A., Haes A. J., Yonzon C. R., Hicks E. M., Duyne R. P. Van IEEE Proc.-Nanobiotech. 2005;152:13–32. - PubMed

Publication types

LinkOut - more resources