Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Feb;30(2):221-33.
doi: 10.1007/s00467-014-2753-3. Epub 2014 Mar 2.

Genetic causes of proteinuria and nephrotic syndrome: impact on podocyte pathobiology

Affiliations
Review

Genetic causes of proteinuria and nephrotic syndrome: impact on podocyte pathobiology

Oleh Akchurin et al. Pediatr Nephrol. 2015 Feb.

Abstract

In the past 20 years, multiple genetic mutations have been identified in patients with congenital nephrotic syndrome (CNS) and both familial and sporadic focal segmental glomerulosclerosis (FSGS). Characterization of the genetic basis of CNS and FSGS has led to the recognition of the importance of podocyte injury to the development of glomerulosclerosis. Genetic mutations induce injury due to effects on the podocyte's structure, actin cytoskeleton, calcium signaling, and lysosomal and mitochondrial function. Transgenic animal studies have contributed to our understanding of podocyte pathobiology. Podocyte endoplasmic reticulum stress response, cell polarity, and autophagy play a role in maintenance of podocyte health. Further investigations related to the effects of genetic mutations on podocytes may identify new pathways for targeting therapeutics for nephrotic syndrome.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Genetic mutations associated with nephrotic syndrome induce injury due to effects on the podocyte’s structure, actin cytoskeleton, calcium signaling, and lysosomal and mitochondrial function

Similar articles

Cited by

References

    1. Ichimura K, Kurihara H, Sakai T. Actin filament organization of foot processes in vertebrate glomerular podocytes. Cell Tissue Res. 2007;329:541–557. - PubMed
    1. Neal CR, Muston PR, Njegovan D, Verrill R, Harper SJ, Deen WM, Bates DO. Glomerular filtration into the subpodocyte space is highly restricted under physiological perfusion conditions. Am J Renal Physiol. 2007;293:F1787–F1798. - PubMed
    1. Lasagni L, Ballerini L, Angelotti ML, Parente E, Sagrinati C, Mazzinghi B, Peired A, Ronconi E, Becherucci F, Bani D, Gacci M, Carini M, Lazzeri E, Romagnani P. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells. 2010;28:1674–1685. - PMC - PubMed
    1. Pippin JW, Sparks MA, Glenn ST, Buitrago S, Coffman TM, Duffield JS, Gross KW, Shankland SJ. Cells of renin lineage are progenitors of podocytes and parietal epithelial cells in experimental glomerular disease. Am J Pathol. 2013;183:542–557. - PMC - PubMed
    1. Zhang J, Pippin JW, Krofft RD, Naito S, Liu ZH, Shankland SJ. Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS. Am J Renal Physiol. 2013;304:F1375–F1389. - PMC - PubMed

Publication types

LinkOut - more resources