Estimating differential expression from multiple indicators
- PMID: 24586062
- PMCID: PMC4005682
- DOI: 10.1093/nar/gku158
Estimating differential expression from multiple indicators
Abstract
Regardless of the advent of high-throughput sequencing, microarrays remain central in current biomedical research. Conventional microarray analysis pipelines apply data reduction before the estimation of differential expression, which is likely to render the estimates susceptible to noise from signal summarization and reduce statistical power. We present a probe-level framework, which capitalizes on the high number of concurrent measurements to provide more robust differential expression estimates. The framework naturally extends to various experimental designs and target categories (e.g. transcripts, genes, genomic regions) as well as small sample sizes. Benchmarking in relation to popular microarray and RNA-sequencing data-analysis pipelines indicated high and stable performance on the Microarray Quality Control dataset and in a cell-culture model of hypoxia. Experimental-data-exhibiting long-range epigenetic silencing of gene expression was used to demonstrate the efficacy of detecting differential expression of genomic regions, a level of analysis not embraced by conventional workflows. Finally, we designed and conducted an experiment to identify hypothermia-responsive genes in terms of monotonic time-response. As a novel insight, hypothermia-dependent up-regulation of multiple genes of two major antioxidant pathways was identified and verified by quantitative real-time PCR.
Figures





References
-
- Raghavachari N, Barb J, Yang Y, Liu P, Woodhouse K, Levy D, O'Donnell CJ, Munson PJ, Kato GJ. A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease. BMC Med Genomics. 2012;5:28. - PMC - PubMed
-
- Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 2004;3 in press. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials