Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Feb 25;12(2):e1001801.
doi: 10.1371/journal.pbio.1001801. eCollection 2014 Feb.

How do filamentous pathogens deliver effector proteins into plant cells?

Affiliations

How do filamentous pathogens deliver effector proteins into plant cells?

Benjamin Petre et al. PLoS Biol. .

Abstract

Fungal and oomycete plant parasites are among the most devastating pathogens of food crops. These microbes secrete effector proteins inside plant cells to manipulate host processes and facilitate colonization. How these effectors reach the host cytoplasm remains an unclear and debated area of plant research. In this article, we examine recent conflicting findings that have generated discussion in the field. We also highlight promising approaches based on studies of both parasite and host during infection. Ultimately, this knowledge may inform future broad spectrum strategies for protecting crops from such pathogens.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Fungal and oomycete structures for effector secretion.
Left panel. Oomycete and fungal plant parasites differentiate infection structures such as extracellular hyphae, as well as invasive hyphae and haustoria that penetrate the host cell cavity and invaginate the plasma membrane. Haustoria (a) and hyphae (b) secrete effectors that are translocated into host cell cytoplasm by unknown mechanisms. Right panel. Effectors secreted from haustoria (a) and hyphae (b) cross different biological interfaces (extra-haustorial matrix [EHMx]/extra-haustorial membrane [EHM] for effectors secreted from haustoria, and apoplast/plant cell wall/plant plasma membrane for effectors secreted from hyphae).
Figure 2
Figure 2. N-terminal effector domains proposed to mediate host-cell entry.
Effectors from fungal (left) and oomycete (right) pathogens. Divergent oomycete and fungal effectors carry a general secretion signal peptide followed by non-conserved N-terminal regions called “uptake” or “targeting/translocation” domains that have been proposed to mediate host-cell entry. In oomycetes, small conserved amino acids motifs (e.g., RXLR, CHXC, or LFLAK) have been identified within these regions, which help to define effector families with many members.
Figure 3
Figure 3. Integrated process of effector translocation.
Effectors (blue) follow secretion routes (arrows) within a pathogen (orange), are secreted into host-parasite interfaces (grey), cross a membrane surrounding the host cell (green), and finally enter the host cell cytoplasm. Each translocation step is likely to be influenced by host- and parasite-derived mechanisms that need to be considered when studying effector trafficking.

References

    1. Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, et al. (2013) The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2: e00731. - PMC - PubMed
    1. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, et al. (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484: 186–194. - PMC - PubMed
    1. Rafiqi M, Ellis JG, Ludowici VA, Hardham AR, Dodds PN (2012) Challenges and progress towards understanding the role of effectors in plant-fungal interactions. Curr Opin Plant Biol 15: 477–482. - PubMed
    1. Bozkurt TO, Schornack S, Banfield MJ, Kamoun S (2012) Oomycetes, effectors, and all that jazz. Curr Opin Plant Biol 15: 483–492. - PubMed
    1. Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, et al. (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450: 115–118. - PubMed

Publication types

MeSH terms

Substances