Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Feb 28;20(8):1898-909.
doi: 10.3748/wjg.v20.i8.1898.

Intestinal stem cells and the colorectal cancer microenvironment

Affiliations
Review

Intestinal stem cells and the colorectal cancer microenvironment

Bryan A Ong et al. World J Gastroenterol. .

Abstract

Colorectal cancer (CRC) remains a highly fatal condition in part due to its resilience to treatment and its propensity to spread beyond the site of primary occurrence. One possible avenue for cancer to escape eradication is via stem-like cancer cells that, through phenotypic heterogeneity, are more resilient than other tumor constituents and are key contributors to cancer growth and metastasis. These proliferative tumor cells are theorized to possess many properties akin to normal intestinal stem cells. Not only do these CRC "stem" cells demonstrate similar restorative ability, they also share many cell pathways and surface markers in common, as well as respond to the same key niche stimuli. With the improvement of techniques for epithelial stem cell identification, our understanding of CRC behavior is also evolving. Emerging evidence about cellular plasticity and epithelial mesenchymal transition are shedding light onto metastatic CRC processes and are also challenging fundamental concepts about unidirectional epithelial proliferation. This review aims to reappraise evidence supporting the existence and behavior of CRC stem cells, their relationship to normal stem cells, and their possible dependence on the stem cell niche.

Keywords: Cell dedifferentiation; Colon cancer stem cells; DCLK1 protein; Stem cell niche.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Origin and development of normal intestinal stem cells. Lgr5+ CBCs and +4 LRCs coexist in the crypt. Each stem cell is fully multipotent. Lgr5+ cells likely maintain intestinal homeostasis under normal conditions. Following intestinal injury, the reserve population comprised of +4 LRCs and Dll1+ secretory progenitors restore both the epithelium and Lgr5+ CBCs. Tuft cells are Bmi1+ cells that may be synonymous with or descendants of +4 LRCs. CRC: Colorectal cancer; CBCs: Crypt base columnar cells; LRCs: Label-retaining intestinal stem cells.
Figure 2
Figure 2
Niche regulation of the normal intestinal epithelium and colorectal cancer. A: Intestinal subepithelial myofibroblasts (ISEMFs) surround the crypt. Along with paneth cells (P), they supply the stem cell niche with trophic signals. Developing intestinal cells migrate upwards towards the villus apex, during which time they are subject to niches among the various strata in the crypt. B: Redundant mediators expressed by ISEMFs and Paneth cells contribute to the preservation of the stem cell compartment and normal intestinal proliferation. C: The local niche immediately around CRC likely fosters tumor growth by activating stem cell pathways. CRC cells lacking proliferative ability may re-awaken upon re-entry into the niche. CRC: Colorectal cancer; BMP: Basic metabolic panel.
Figure 3
Figure 3
Epithelial-mesenchymal transition and mesenchymal-epithelial transition in colorectal cancer. In a primary tumor, CRC stem cells exist in a stationary phase that promotes growth. EMT transition to a migratory mesenchymal phase deactivates proliferative genes and cell adhesion molecules, generally allowing for metastatic dissemination to occur. Once at distant targets, mesenchymal cells transition back to the stationary phase via MET thereby resuming tumor expansion. EMT: Epithelial-mesenchymal transition; MET: Mesenchymal-epithelial transition; CRC: Colorectal cancer.

Similar articles

Cited by

References

    1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29. - PubMed
    1. Population Reference Bureau. 2012 World Population Sheet. Available from: http://www.prb.org/pdf12/2012-population-data-sheet_eng.pdf.
    1. Cancer research UK. Colorectal Cancer. 2011. Available from: http://www.cancerresearchuk.org/cancer-info/cancerstats/world/colorectal....
    1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D, Bray F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49:1374–1403. - PubMed
    1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. GLOBOCAN v2.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 [Internet] Lyon: International Agency for Research on Cancer; 2010.