Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014;37(9):1193-200.
doi: 10.1007/s12272-014-0362-0. Epub 2014 Mar 5.

Ginsenoside metabolite compound K stimulates glucagon-like peptide-1 secretion in NCI-H716 cells via bile acid receptor activation

Affiliations

Ginsenoside metabolite compound K stimulates glucagon-like peptide-1 secretion in NCI-H716 cells via bile acid receptor activation

Kyong Kim et al. Arch Pharm Res. 2014.

Abstract

Compound K (CK) is a major metabolite of ginsenosides that is absorbed. CK has antidiabetic effects, although the mechanisms underlying the effects of CK have not fully been known. To elucidate the mechanisms underlying the antidiabetic effects of CK, we studied the effects of CK on GLP-1 secretion from NCI-H716 cells, and explored the mechanisms underlying CK-induced GLP-1 secretion. Treatment of NCI-H716 cells with 10, 50, and 100 μM CK significantly increased GLP-1 secretion, and intracellular Ca²⁺ and cAMP levels in a dose-dependent manner. Transfection of NCI-H716 cells with siRNA specific to α-gustducin and siRNA specific to TAS1R3 had no effect on CK-induced GLP-1 secretion and Ca²⁺ increase. However, transfection of NCI-H716 cells with TGR5-specific siRNA significantly inhibited CK-induced GLP-1 secretion and the increase in Ca²⁺ and cAMP levels. Moreover, CK showed human TGR5 agonist activity in CHO-K1 cells transiently transfected with human TGR5. Our data provide a novel mechanism of CK for antidiabetic effects. Moreover, the findings might suggest that CK is a potential agent that has multiple biological functions in the body via GLP-1 secretion and TGR5 activation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources