Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May;40(5):680-90.
doi: 10.3109/03639045.2014.892955. Epub 2014 Mar 5.

Design and in vitro characterization of buccoadhesive tablets of timolol maleate

Affiliations

Design and in vitro characterization of buccoadhesive tablets of timolol maleate

Sachin S Gaikwad et al. Drug Dev Ind Pharm. 2014 May.

Abstract

Objective: The purpose of this work was to develop and evaluate buccoadhesive tablets of timolol maleate (TM) due to its potential to circumvent the first-pass metabolism and to improve its bioavailability.

Methods: The tablets were prepared by direct compression using two release modifying polymers, Carbopol 974P (Cp-974p) and sodium alginate (SA). A 3(2) full factorial design was employed to study the effect of independent variables, Cp-974p and SA, in various proportions in percent w/w, which influences the in vitro drug release and bioadhesive strengths. Physicochemical properties of the drug were evaluated by ultraviolet, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder X-ray diffraction (P-XRD). Tablets were evaluated for hardness, thickness, weight variation, drug content, surface pH, swelling index, bioadhesive force and in vitro drug release.

Results: The FTIR and DSC studies showed no evidence of interactions between drug, polymers and excipients. The P-XRD study revealed that crystallinity of TM remain unchanged in optimized formulation tablet. Formulation F9 achieves an in vitro drug release of 98.967% ± 0.28 at 8 h and a bioadhesive force of 0.088 N ± 0.01211.

Conclusion: We successfully developed buccal tablet formulations of TM and describe a non-Fickian-type anomalous transport as the release mechanism.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources