Structure of the SAS-6 cartwheel hub from Leishmania major
- PMID: 24596152
- PMCID: PMC3939493
- DOI: 10.7554/eLife.01812
Structure of the SAS-6 cartwheel hub from Leishmania major
Abstract
Centrioles are cylindrical cell organelles with a ninefold symmetric peripheral microtubule array that is essential to template cilia and flagella. They are built around a central cartwheel assembly that is organized through homo-oligomerization of the centriolar protein SAS-6, but whether SAS-6 self-assembly can dictate cartwheel and thereby centriole symmetry is unclear. Here we show that Leishmania major SAS-6 crystallizes as a 9-fold symmetric cartwheel and provide the X-ray structure of this assembly at a resolution of 3.5 Å. We furthermore demonstrate that oligomerization of Leishmania SAS-6 can be inhibited by a small molecule in vitro and provide indications for its binding site. Our results firmly establish that SAS-6 can impose cartwheel symmetry on its own and indicate how this process might occur mechanistically in vivo. Importantly, our data also provide a proof-of-principle that inhibition of SAS-6 oligomerization by small molecules is feasible. DOI: http://dx.doi.org/10.7554/eLife.01812.001.
Keywords: Leishmania; SAS-6; basal body; centriole; centrosome; trypanosomatid.
Conflict of interest statement
The authors declare that no competing interests exist.
Figures









Similar articles
-
Structures of SAS-6 coiled coil hold implications for the polarity of the centriolar cartwheel.Structure. 2022 May 5;30(5):671-684.e5. doi: 10.1016/j.str.2022.02.005. Epub 2022 Mar 2. Structure. 2022. PMID: 35240058 Free PMC article.
-
SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture.Nat Cell Biol. 2016 Apr;18(4):393-403. doi: 10.1038/ncb3329. Epub 2016 Mar 21. Nat Cell Biol. 2016. PMID: 26999736
-
Structures of SAS-6 suggest its organization in centrioles.Science. 2011 Mar 4;331(6021):1196-9. doi: 10.1126/science.1199325. Epub 2011 Jan 27. Science. 2011. PMID: 21273447
-
The Rise of the Cartwheel: Seeding the Centriole Organelle.Bioessays. 2018 Apr;40(4):e1700241. doi: 10.1002/bies.201700241. Epub 2018 Mar 6. Bioessays. 2018. PMID: 29508910 Review.
-
Cartwheel assembly.Philos Trans R Soc Lond B Biol Sci. 2014 Sep 5;369(1650):20130458. doi: 10.1098/rstb.2013.0458. Philos Trans R Soc Lond B Biol Sci. 2014. PMID: 25047612 Free PMC article. Review.
Cited by
-
Family-specific Kinesin Structures Reveal Neck-linker Length Based on Initiation of the Coiled-coil.J Biol Chem. 2016 Sep 23;291(39):20372-86. doi: 10.1074/jbc.M116.737577. Epub 2016 Jul 26. J Biol Chem. 2016. PMID: 27462072 Free PMC article.
-
The PLK4-STIL-SAS-6 module at the core of centriole duplication.Biochem Soc Trans. 2016 Oct 15;44(5):1253-1263. doi: 10.1042/BST20160116. Biochem Soc Trans. 2016. PMID: 27911707 Free PMC article. Review.
-
The ubiquitin ligase FBXW7 targets the centriolar assembly protein HsSAS-6 for degradation and thereby regulates centriole duplication.J Biol Chem. 2020 Apr 3;295(14):4428-4437. doi: 10.1074/jbc.AC119.012178. Epub 2020 Feb 21. J Biol Chem. 2020. PMID: 32086376 Free PMC article.
-
Direct binding of CEP85 to STIL ensures robust PLK4 activation and efficient centriole assembly.Nat Commun. 2018 Apr 30;9(1):1731. doi: 10.1038/s41467-018-04122-x. Nat Commun. 2018. PMID: 29712910 Free PMC article.
-
Drosophila Sas-6, Ana2 and Sas-4 self-organise into macromolecular structures that can be used to probe centriole and centrosome assembly.J Cell Sci. 2020 Jun 22;133(12):jcs244574. doi: 10.1242/jcs.244574. J Cell Sci. 2020. PMID: 32409564 Free PMC article.
References
-
- Afonine PV, Grosse-Kunstleve RW, Adams PD. 2005. The phenix refinement framework. CCP4 Newsletter 42
-
- Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Böhme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetler J, Ivens A, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech V, Line A, Lord A, Macleod A, Mooney PJ, Moule S, Martin DM, Morgan GW, Mungall K, Norbertczak H, Ormond D, Pai G, Peacock CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream MA, Reitter C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson AJ, Tallon L, Turner CM, Tait A, Tivey AR, Van Aken S, Walker D, Wanless D, Wang S, White B, White O, Whitehead S, Woodward J, Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD, Fairlamb AH, Opperdoes F, Barrell BG, Donelson JE, Hall N, Fraser CM, Melville SE, El-Sayed NM. 2005. The genome of the African trypanosome Trypanosoma brucei. Science (New York, NY) 309:416–422. 10.1126/science.1112642 - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources