Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 25;10(12):2382-9.
doi: 10.1002/smll.201303827. Epub 2014 Mar 4.

Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: an excellent metal-/label-free biosensing platform

Affiliations

Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: an excellent metal-/label-free biosensing platform

Tian Yi Ma et al. Small. .

Abstract

Ultrathin graphitic carbon nitride (g-C3N4) nanosheets, due to their interesting two-dimensional graphene-like structure and unique physicochemical properties, have attracted great research attention recently. Here, a new approach is developed to prepare, for the first time, proton-functionalized ultrathin g-C3N4 nanosheets by sonication-exfoliation of bulk g-C3N4 under an acid condition. This method not only reduces the exfoliation time from more than 10 h to 2 h, but also endows the nanosheets with positive charges. Besides retaining the properties of g-C3N4, the obtained nanosheets with the thickness of 2-4 nm (i.e., 6-12 atomic monolayers) also exhibit large specific surface area of 305 m(2) g(-1), enhanced fluorescence intensity, and excellent water dispersion stability due to their surface protonation and ultrathin morphology. The well-dispersed protonated g-C3N4 nanosheets are able to interact with negatively charged heparin, which results in the quenching of g-C3N4 fluorescence. A highly sensitive and highly selective heparin sensing platform based on protonated g-C3N4 nanosheets is established. This metal-free and fluorophore label-free system can reach the lowest heparin detection limit of 18 ng mL(-1).

Keywords: biosensing; carbon nitride; fluorescence; heparin; nanosheets.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources