Mortality related to air pollution with the moscow heat wave and wildfire of 2010
- PMID: 24598414
- PMCID: PMC3984022
- DOI: 10.1097/EDE.0000000000000090
Mortality related to air pollution with the moscow heat wave and wildfire of 2010
Abstract
Background: Prolonged high temperatures and air pollution from wildfires often occur together, and the two may interact in their effects on mortality. However, there are few data on such possible interactions.
Methods: We analyzed day-to-day variations in the number of deaths in Moscow, Russia, in relation to air pollution levels and temperature during the disastrous heat wave and wildfire of 2010. Corresponding data for the period 2006-2009 were used for comparison. Daily average levels of PM10 and ozone were obtained from several continuous measurement stations. The daily number of nonaccidental deaths from specific causes was extracted from official records. Analyses of interactions considered the main effect of temperature as well as the added effect of prolonged high temperatures and the interaction with PM10.
Results: The major heat wave lasted for 44 days, with 24-hour average temperatures ranging from 24°C to 31°C and PM10 levels exceeding 300 μg/m on several days. There were close to 11,000 excess deaths from nonaccidental causes during this period, mainly among those older than 65 years. Increased risks also occurred in younger age groups. The most pronounced effects were for deaths from cardiovascular, respiratory, genitourinary, and nervous system diseases. Continuously increasing risks following prolonged high temperatures were apparent during the first 2 weeks of the heat wave. Interactions between high temperatures and air pollution from wildfires in excess of an additive effect contributed to more than 2000 deaths.
Conclusions: Interactions between high temperatures and wildfire air pollution should be considered in risk assessments regarding health consequences of climate change.
Figures




Comment in
-
Commentary: Tolstoy's heat waves: each catastrophic in its own way?Epidemiology. 2014 May;25(3):365-7. doi: 10.1097/EDE.0000000000000086. Epidemiology. 2014. PMID: 24713879 No abstract available.
References
-
- Meehl GA, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science. 2004;305:994–997. - PubMed
-
- De Sario M, Katsouyanni K, Michelozzi P. Climate change, extreme weather events, air pollution and respiratory health in Europe. Eur Respir J. 2013;42:826–843. - PubMed
-
- Åström DO, Forsberg B, Rocklöv J. Heat wave impact on morbidity and mortality in the elderly population: a review of recent studies. Maturitas. 2011;69:99–105. - PubMed
-
- Climate Change 2007. The physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change (IPCC). In: Solomon S, Qin D, Manning M, editors. United Kingdom and New York, NY: Cambridge University Press; 2007.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical