Effect of fluoxetine on disease progression in a mouse model of ALS
- PMID: 24598527
- PMCID: PMC4097867
- DOI: 10.1152/jn.00425.2013
Effect of fluoxetine on disease progression in a mouse model of ALS
Abstract
Selective serotonin reuptake inhibitors (SSRIs) and other antidepressants are often prescribed to amyotrophic lateral sclerosis (ALS) patients; however, the impact of these prescriptions on ALS disease progression has not been systematically tested. To determine whether SSRIs impact disease progression, fluoxetine (Prozac, 5 or 10 mg/kg) was administered to mutant superoxide dismutase 1 (SOD1) mice during one of three age ranges: neonatal [postnatal day (P)5-11], adult presymptomatic (P30 to end stage), and adult symptomatic (P70 to end stage). Long-term adult fluoxetine treatment (started at either P30 or P70 and continuing until end stage) had no significant effect on disease progression. In contrast, neonatal fluoxetine treatment (P5-11) had two effects. First, all animals (mutant SOD1(G93A) and control: nontransgenic and SOD1(WT)) receiving the highest dose (10 mg/kg) had a sustained decrease in weight from P30 onward. Second, the high-dose SOD1(G93A) mice reached end stage ∼8 days (∼6% decrease in life span) sooner than vehicle and low-dose animals because of an increased rate of motor impairment. Fluoxetine increases synaptic serotonin (5-HT) levels, which is known to increase spinal motoneuron excitability. We confirmed that 5-HT increases spinal motoneuron excitability during this neonatal time period and therefore hypothesized that antagonizing 5-HT receptors during the same time period would improve disease outcome. However, cyproheptadine (1 or 5 mg/kg), a 5-HT receptor antagonist, had no effect on disease progression. These results show that a brief period of antidepressant treatment during a critical time window (the transition from neonatal to juvenile states) can be detrimental in ALS mouse models.
Keywords: Prozac; amyotrophic lateral sclerosis; antidepressant; fluoxetine; motoneuron excitability.
Copyright © 2014 the American Physiological Society.
Figures
References
-
- Andersen PM, Borasio GD, Dengler R, Hardiman O, Kollewe K, Leigh PN, Pradat PF, Silani V, Tomik B. EFNS task force on management of amyotrophic lateral sclerosis: guidelines for diagnosing and clinical care of patients and relatives. Eur J Neurol 12: 921–938, 2005 - PubMed
-
- Barbeau H, Rossignol S. The effects of serotonergic drugs on the locomotor pattern and on cutaneous reflexes of the adult chronic spinal cat. Brain Res 514: 55–67, 1990 - PubMed
-
- Barthlen GM, Lange DJ. Unexpectedly severe sleep and respiratory pathology in patients with amyotrophic lateral sclerosis. Eur J Neurol 7: 299–302, 2000 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
