Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Nov;72(5):1790-6.

Sialic acid prevents loss of large von Willebrand factor multimers by protecting against amino-terminal proteolytic cleavage

Affiliations
  • PMID: 2460162
Free article

Sialic acid prevents loss of large von Willebrand factor multimers by protecting against amino-terminal proteolytic cleavage

S D Berkowitz et al. Blood. 1988 Nov.
Free article

Abstract

Removal of sialic acid from the von Willebrand factor (vWF) subunit exposes additional cleavage sites in the amino-terminal region that are associated with loss of large multimers. The extent of large multimer loss was evaluated by examining the sites of subunit cleavage of native and carbohydrate-modified vWF after treatment with trypsin, chymotrypsin, or plasmin. In the presence of proteinase inhibitors, purified vWF was treated with neuraminidase alone to remove 90% to 95% of the sialic acid or with neuraminidase and beta-galactosidase to remove the sialic acid and 45% to 50% of the D-galactose, with little or no loss of large multimers observed. Digestion of native vWF with trypsin produced the greatest loss of large multimers, while chymotrypsin produced less and plasmin produced the least. Large multimer loss was more extensive with each enzyme after carbohydrate modification of vWF. The extent and approximate location of subunit cleavage was determined by immunoblotting and monoclonal antibody epitope mapping. Trypsin, chymotrypsin, and plasmin were shown to produce both amino- and carboxyl-terminal fragments. The number, location, and relative quantities of carboxyl-terminal fragments produced were unchanged after carbohydrate modification. However, digestion of the amino-terminal region was considerably more extensive after carbohydrate modification as judged by a marked decrease or absence of the larger fragments seen when native vWF was digested, and by the appearance of new smaller molecular mass species. Therefore, the greater loss of large multimers that occurs after carbohydrate modification is likely to be the result of cleavages in the amino-terminal region of the molecule. By protecting the vWF subunit against amino-terminal cleavage, sialic acid inhibits the loss of large multimers.

PubMed Disclaimer

Publication types

LinkOut - more resources