Retinal nerve fiber layer evaluation of spectral domain optical coherence tomograph and scanning laser polarimeter to diagnose glaucoma
- PMID: 24603422
- PMCID: PMC4058612
- DOI: 10.1038/eye.2014.46
Retinal nerve fiber layer evaluation of spectral domain optical coherence tomograph and scanning laser polarimeter to diagnose glaucoma
Abstract
Purpose: To compare the abilities of retinal nerve fiber layer (RNFL) parameters of spectral domain optical coherence tomograph (SDOCT) and scanning laser polarimeter (GDx enhanced corneal compensation; ECC) in detecting glaucoma.
Methods: In a cross-sectional study, 215 eyes of 165 subjects (106 eyes of 79 glaucoma patients and 109 eyes of 86 controls) referred by general ophthalmologists for glaucoma evaluation underwent RNFL imaging with SDOCT and GDx ECC. Ability of RNFL parameters of SDOCT to discriminate glaucoma eyes from control eyes was compared with that of GDx ECC using area under operating characteristic curves (AUCs), sensitivities at fixed specificities, and likelihood ratios (LRs).
Results: AUC of the average RNFL thickness of SDOCT to differentiate glaucoma from control eyes (0.868) was comparable (P=0.32) to that of GDx ECC (0.855). Sensitivity at 95% specificity was 63.2% for average RNFL thickness of SDOCT and 48.1% for the average RNFL measurement of GDx ECC. LRs of outside normal limits category of SDOCT parameters ranged between 5.6 and 7.7 while the same of GDx ECC parameters ranged between 3.1 and 3.7. LRs of within normal limits category of SDOCT parameters ranged between 0.18 and 0.24 while the same of GDx ECC parameters ranged between 0.20 and 0.32.
Conclusion: Though AUCs and sensitivities at fixed specificities were comparable between the RNFL parameters of SDOCT and GDx ECC in diagnosing glaucoma, LRs indicated that the RNFL parameters of SDOCT were better in 'ruling in' glaucoma.
Figures
References
-
- Nassif N, Cense B, Park B, Pierce M, Yun S, Bouma B, et al. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt Express. 2004;12:367–376. - PubMed
-
- Wojtkowski M, Srinivasan V, Ko T, Fujimoto J, Kowalczyk A, Duker J. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express. 2004;12:2404–2422. - PubMed
-
- Weinreb RN, Shakiba S, Zangwill L. Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes. Am J Ophthalmol. 1995;119:627–636. - PubMed
-
- Reus NJ, Zhou Q, Lemij HG. Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci. 2006;47:3870–3877. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
