Water-induced shape-memory poly(D,L-lactide)/microcrystalline cellulose composites
- PMID: 24607166
- DOI: 10.1016/j.carbpol.2014.01.031
Water-induced shape-memory poly(D,L-lactide)/microcrystalline cellulose composites
Abstract
Thermo-induced shape-memory polymers (SMPs) have been widely investigated, but their biomedical applications are limited because their switching temperature does not fall completely within the range of room temperature to body temperature. In this study, we prepared water-induced shape-memory composites composed of microcrystalline cellulose (MCC) and poly(d,l-lactide) (PDLLA). We observed that the composite with an MCC content of 35% (PDLLA-MCC-35) exhibited a good shape-memory effect upon exposure to water at 37°C. We also analyzed the mechanism of the water-triggered shape-memory effect by considering the microstructure, water contact angle, water uptake, thermal properties and static and dynamic mechanical properties of the composite. The results of in vitro degradation analysis demonstrate that the composites exhibited good biodegradation. In addition, Alamar blue assays based on osteoblasts indicate that the composites possess good cytocompatibility. Therefore, the water-induced shape-memory composite can potentially be developed into a new smart medical device.
Keywords: Biodegradable; Composites; Microcrystalline cellulose; Shape memory.
Copyright © 2014 Elsevier Ltd. All rights reserved.
Similar articles
-
Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals.ACS Appl Mater Interfaces. 2015 Feb 25;7(7):4118-26. doi: 10.1021/am5081056. Epub 2015 Feb 16. ACS Appl Mater Interfaces. 2015. PMID: 25647407
-
Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites.Biomaterials. 2006 Aug;27(24):4288-95. doi: 10.1016/j.biomaterials.2006.03.043. Epub 2006 May 3. Biomaterials. 2006. PMID: 16675009
-
A novel high mechanical strength shape memory polymer based on ethyl cellulose and polycaprolactone.Carbohydr Polym. 2013 Jul 25;96(2):522-7. doi: 10.1016/j.carbpol.2013.04.026. Epub 2013 Apr 17. Carbohydr Polym. 2013. PMID: 23768596
-
Modification of Cellulose Micro- and Nanomaterials to Improve Properties of Aliphatic Polyesters/Cellulose Composites: A Review.Polymers (Basel). 2022 Apr 5;14(7):1477. doi: 10.3390/polym14071477. Polymers (Basel). 2022. PMID: 35406349 Free PMC article. Review.
-
Biodegradable polyester shape memory polymers: Recent advances in design, material properties and applications.Mater Sci Eng C Mater Biol Appl. 2018 Nov 1;92:1061-1074. doi: 10.1016/j.msec.2017.11.008. Epub 2017 Nov 21. Mater Sci Eng C Mater Biol Appl. 2018. PMID: 30184729 Review.
Cited by
-
Electrospun Shape Memory Polymer Micro-/Nanofibers and Tailoring Their Roles for Biomedical Applications.Nanomaterials (Basel). 2021 Apr 6;11(4):933. doi: 10.3390/nano11040933. Nanomaterials (Basel). 2021. PMID: 33917478 Free PMC article. Review.
-
Physiologically Relevant Mechanics of Biodegradable Polyester Nanoparticles.Nano Lett. 2020 Oct 14;20(10):7536-7542. doi: 10.1021/acs.nanolett.0c03004. Epub 2020 Oct 5. Nano Lett. 2020. PMID: 32986433 Free PMC article.
-
Water-Assisted Production of Thermoplastic Nanocomposites: A Review.Materials (Basel). 2014 Dec 29;8(1):72-95. doi: 10.3390/ma8010072. Materials (Basel). 2014. PMID: 28787925 Free PMC article. Review.
-
Moisture-responsive films of cellulose stearoyl esters showing reversible shape transitions.Sci Rep. 2015 Jun 8;5:11011. doi: 10.1038/srep11011. Sci Rep. 2015. PMID: 26051984 Free PMC article.
-
Morphology, Structural, Thermal, and Tensile Properties of Bamboo Microcrystalline Cellulose/Poly(Lactic Acid)/Poly(Butylene Succinate) Composites.Polymers (Basel). 2021 Feb 1;13(3):465. doi: 10.3390/polym13030465. Polymers (Basel). 2021. PMID: 33535490 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources