Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals
- PMID: 24608181
- DOI: 10.1038/nmeth.2884
Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals
Abstract
Gene circuits are dynamical systems that regulate cellular behaviors, often using protein signals as inputs and outputs. Here we have developed an optogenetic 'function generator' method for programming tailor-made gene expression signals in live bacterial cells. We designed precomputed light sequences based on experimentally calibrated mathematical models of light-switchable two-component systems and used them to drive intracellular protein levels to match user-defined reference time courses. We used this approach to generate accelerated and linearized dynamics, sinusoidal oscillations with desired amplitudes and periods, and a complex waveform, all with unprecedented accuracy and precision. We also combined the function generator with a dual fluorescent protein reporter system, analogous to a dual-channel oscilloscope, to reveal that a synthetic repressible promoter linearly transforms repressor signals with an approximate 7-min delay. Our approach will enable a new generation of dynamical analyses of synthetic and natural gene circuits, providing an essential step toward the predictive design and rigorous understanding of biological systems.
Similar articles
-
Use of fluorescence microscopy to analyze genetic circuit dynamics.Methods Enzymol. 2011;497:275-93. doi: 10.1016/B978-0-12-385075-1.00013-5. Methods Enzymol. 2011. PMID: 21601092
-
Visualization of evolutionary stability dynamics and competitive fitness of Escherichia coli engineered with randomized multigene circuits.ACS Synth Biol. 2013 Sep 20;2(9):519-28. doi: 10.1021/sb400055h. Epub 2013 Sep 4. ACS Synth Biol. 2013. PMID: 24004180
-
Oscillations by minimal bacterial suicide circuits reveal hidden facets of host-circuit physiology.PLoS One. 2010 Jul 30;5(7):e11909. doi: 10.1371/journal.pone.0011909. PLoS One. 2010. PMID: 20689598 Free PMC article.
-
Circuit-level input integration in bacterial gene regulation.Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):7091-6. doi: 10.1073/pnas.1216091110. Epub 2013 Apr 9. Proc Natl Acad Sci U S A. 2013. PMID: 23572583 Free PMC article.
-
Towards a circuit engineering discipline.Curr Biol. 2000 Apr 20;10(8):R318-20. doi: 10.1016/s0960-9822(00)00440-1. Curr Biol. 2000. PMID: 10801411 Review.
Cited by
-
Synthetic Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells.Cell Rep. 2016 Aug 30;16(9):2525-37. doi: 10.1016/j.celrep.2016.07.061. Epub 2016 Aug 18. Cell Rep. 2016. PMID: 27545896 Free PMC article.
-
Developments in the tools and methodologies of synthetic biology.Front Bioeng Biotechnol. 2014 Nov 26;2:60. doi: 10.3389/fbioe.2014.00060. eCollection 2014. Front Bioeng Biotechnol. 2014. PMID: 25505788 Free PMC article. Review.
-
Model-based control of the temporal patterns of intracellular signaling in silico.Biophys Physicobiol. 2017 Feb 22;14:29-40. doi: 10.2142/biophysico.14.0_29. eCollection 2017. Biophys Physicobiol. 2017. PMID: 28275530 Free PMC article.
-
A simplified two-plasmid system for orthogonal control of mammalian gene expression using light-activated CRISPR effector.BMC Biotechnol. 2025 Jul 1;25(1):58. doi: 10.1186/s12896-025-00994-2. BMC Biotechnol. 2025. PMID: 40598087 Free PMC article.
-
Metabolic transistor strategy for controlling electron transfer chain activity in Escherichia coli.Metab Eng. 2015 Mar;28:159-168. doi: 10.1016/j.ymben.2015.01.002. Epub 2015 Jan 14. Metab Eng. 2015. PMID: 25596510 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials