Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May;76(5):1045-80.
doi: 10.1007/s11538-014-9946-6. Epub 2014 Mar 8.

Modeling the role of TGF-β in regulation of the Th17 phenotype in the LPS-driven immune system

Affiliations

Modeling the role of TGF-β in regulation of the Th17 phenotype in the LPS-driven immune system

Seongwon Lee et al. Bull Math Biol. 2014 May.

Abstract

Airway exposure levels of lipopolysaccharide (LPS) are known to determine type I versus type II helper T cell induced experimental asthma. While low doses of LPS derive Th2 inflammatory responses, high (and/or intermediate) LPS levels induce Th1- or Th17-dominant responses. The present paper develops a mathematical model of the phenotypic switches among three Th phenotypes (Th1, Th2, and Th17) in response to various LPS levels. In the present work, we simplify the complex network of the interactions between cells and regulatory molecules. The model describes the nonlinear cross-talks between the IL-4/Th2 activities and a key regulatory molecule, transforming growth factor β (TGF-β), in response to high, intermediate, and low levels of LPS. The model characterizes development of three phenotypes (Th1, Th2, and Th17) and predicts the onset of a new phenotype, Th17, under the tight control of TGF-β. Analysis of the model illustrates the mono-, bi-, and oneway-switches in the key regulatory parameter sets in the absence or presence of time delays. The model also predicts coexistence of those phenotypes and Th1- or Th2-dominant immune responses in a spatial domain under various biochemical and bio-mechanical conditions in the microenvironment.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources