Sex differences in the pulmonary circulation: implications for pulmonary hypertension
- PMID: 24610923
- PMCID: PMC4010667
- DOI: 10.1152/ajpheart.00857.2013
Sex differences in the pulmonary circulation: implications for pulmonary hypertension
Abstract
Pulmonary arterial hypertension (PAH), a form of pulmonary hypertension, is a complex disease of multifactorial origin. While new developments regarding pathophysiological features and therapeutic options in PAH are being reported, one important fact has emerged over the years: there is a sex difference in the incidence of this disease such that while there is a higher incidence in females, disease outcomes are much worse in males. Accordingly, recent attention has been focused on understanding the features of sex differences in the pulmonary circulation and the contributory mechanisms, particularly sex hormones and their role in the pathological and pathophysiological features of PAH. However, to date, there is no clear consensus whether sex hormones (particularly female sex steroids) are beneficial or detrimental in PAH. In this review, we highlight some of the most recent evidence regarding the influence of sex hormones (estrogen, testosterone, progesterone, dehydroepiandrosterone) and estrogen metabolites on key pathophysiological features of PAH such as proliferation, vascular remodeling, vasodilation/constriction, and inflammation, thus setting the stage for research avenues to identify novel therapeutic target for PAH as well as potentially other forms of pulmonary hypertension.
Keywords: estrogen; pulmonary artery; pulmonary hypertension; sex hormones.
Figures
References
-
- Abenhaim L, Moride Y, Brenot F, Rich S, Benichou J, Kurz X, Higenbottam T, Oakley C, Wouters E, Aubier M, Simonneau G, Begaud B. Appetite-suppressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group. N Engl J Med 335: 609–616, 1996 - PubMed
-
- Austin ED, Ma L, LeDuc C, Berman Rosenzweig E, Borczuk A, Phillips JA, 3rd, Palomero T, Sumazin P, Kim HR, Talati MH, West J, Loyd JE, Chung WK. Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ Cardiovasc Genet 5: 336–343, 2012 - PMC - PubMed
-
- Badawi AF, Cavalieri EL, Rogan EG. Role of human cytochrome P450 1A1, 1A2, 1B1, and 3A4 in the 2-, 4-, and 16alpha-hydroxylation of 17beta-estradiol. Metabolism 50: 1001–1003, 2001 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
