Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Dec;130(2):610-20.
doi: 10.1016/0012-1606(88)90356-9.

Outer root sheath cells of human hair follicle are able to regenerate a fully differentiated epidermis in vitro

Affiliations

Outer root sheath cells of human hair follicle are able to regenerate a fully differentiated epidermis in vitro

M C Lenoir et al. Dev Biol. 1988 Dec.

Abstract

During wound healing, interfollicular epidermis can be regenerated from the outer root sheath of hair follicles, showing that the cells of this structure can shift toward an interfollicular epidermal phenotype. Similarly, it has been shown that a multilayered epithelium originating from outer sheath cells can be obtained in vitro by culturing hair follicles. However, in the culture systems developed so far, the phenotypical shift was incomplete since the cells retained some of their original characteristics and did not acquire several key markers of terminally differentiated epidermis. In this paper, we describe a new tissue culture method for obtaining a multilayered epithelium from outer sheath cells. This is performed by implanting human hair follicles vertically into dermal equivalents and then raising the culture at the air-liquid interface. The morphological, immunological, and biochemical features of the in vitro reconstructed tissue are very similar to those observed in normal interfollicular epidermis, including those specific for terminally differentiated keratinocytes. Thus, under appropriate in vitro conditions, outer root sheath cells are able to express an interfollicular epidermal phenotype as occurs in vivo during wound healing.

PubMed Disclaimer

LinkOut - more resources