Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Mar 13;9(3):e91385.
doi: 10.1371/journal.pone.0091385. eCollection 2014.

Association of variable number of tandem repeats in the coding region of the FAM46A gene, FAM46A rs11040 SNP and BAG6 rs3117582 SNP with susceptibility to tuberculosis

Affiliations

Association of variable number of tandem repeats in the coding region of the FAM46A gene, FAM46A rs11040 SNP and BAG6 rs3117582 SNP with susceptibility to tuberculosis

Godfrey Essien Etokebe et al. PLoS One. .

Abstract

We analyzed for association between the Family with sequence similarity 46, member A (FAM46A) gene (located on chromosome 6q14.1), BCL2-Associated Athanogene 6 (BAG6) gene (located on chromosome 6p21.3) and tuberculosis in Croatian Caucasian. We genotyped the FAM46A rs11040 SNP, FAM46A VNTR and BAG6 rs3117582 polymorphisms in a case-control study with 257 tuberculosis patients and 493 healthy individuals in a Croatian Caucasian population. We found that genotype FAM46A 3/3 (three VNTR repeats homozygote) was associated with susceptibility to tuberculosis (p<0.0015, Pcorr.<0.029, Odds ratio = 2.42, 95% Confidence Interval = 1.34-4.3). This association suggests that the protein domain encoded by the VNTR might be important for the function of the FAM46A protein, which, in turn, could be relevant in developing tuberculosis. In addition, we found that FAM46A rs11040 SNP:FAM46A VNTR:BAG6 haplotype 132 (G-3-C) is associated with susceptibility to tuberculosis (p<0.012, pcorr.<0.024, Odds ratio 3.45, 95% Confidence Interval = 1.26-9.74). This may suggests that the interaction between the FAM46A and BAG6 proteins may be involved in tuberculosis etiology. We found also that infection of human macrophages with heat-killed M. tuberculosis (H37Rv) led to over-expression of FAM46A (VNTR 3/4) transcript. This is the first study to show associations between the FAM46A gene VNTR polymorphisms, FAM46A rs11040 SNP:FAM46A VNTR:BAG6 haplotypes and any disease.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Schematic representation of FAM46A mRNA alleles in CCDS.
Cloning and sequencing of FAM46A mRNA from our studied population generated six variants of the FAM46A gene that were different at the VNTR site. FAM46A alleles 3, 4, 5, and 6 (UniProt identifiers: >sp|Q96IP4|29-33), (>sp|Q96IP4|24-28), (>sp|Q96IP4|34-38) and (>sp|Q96IP4|39-43, respectively) were previously reported. Our submission of the sequences for FAM46A allele 2 and 7 to the GenBank has recently (06.02.2014) been accepted for publication with accession numbers KF878392 and KF878393, respectively.
Figure 2
Figure 2. Mycobacterium tuberculosis (H37Rv) infection induces the over-expression of FAM46A RNA in macrophages.
Total RNA was extracted from macrophages that were infected with M. tuberculosis (H37Rv) for 12 hours and uninfected macrophages, respectively. Extracted RNAs were subjected to quantitative real-time PCR for FAM46A gene amplification. Copy number was normalized to that of uninfected macrophages.

Similar articles

Cited by

References

    1. World Health Organization (2012) Global tuberculosis report. 9.
    1. Ernst JD (2012) The immunological life cycle of tuberculosis. Nat Rev Immunol 12: 581–591 nri3259 [pii];10.1038/nri3259 [doi]. - PubMed
    1. Grant AV, El BJ, Sabri A, El AS, Alaoui-Tahiri K, et al... (2013) Age-Dependent Association between Pulmonary Tuberculosis and Common TOX Variants in the 8q12-13 Linkage Region. Am J Hum Genet. S0002-9297(13)00045-1 [pii];10.1016/j.ajhg.2013.01.013 [doi]. - PMC - PubMed
    1. Rodrigue S, Provvedi R, Jacques PE, Gaudreau L, Manganelli R (2006) The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol Rev 30: 926–941 FMR040 [pii];10.1111/j.1574-6976.2006.00040.x [doi]. - PubMed
    1. Smith I (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16: 463–496. - PMC - PubMed