Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 May;21(3):201-9.
doi: 10.1097/MOH.0000000000000035.

Abnormal red cell features associated with hereditary neurodegenerative disorders: the neuroacanthocytosis syndromes

Affiliations
Review

Abnormal red cell features associated with hereditary neurodegenerative disorders: the neuroacanthocytosis syndromes

Lucia De Franceschi et al. Curr Opin Hematol. 2014 May.

Abstract

Purpose of review: This review discusses the mechanisms involved in the generation of thorny red blood cells (RBCs), known as acanthocytes, in patients with neuroacanthocytosis, a heterogenous group of neurodegenerative hereditary disorders that include chorea-acanthocytosis (ChAc) and McLeod syndrome (MLS).

Recent findings: Although molecular defects associated with neuroacanthocytosis have been identified recently, their pathophysiology and the related RBC abnormalities are largely unknown. Studies in ChAc RBCs have shown an altered association between the cytoskeleton and the integral membrane protein compartment in the absence of major changes in RBC membrane composition. In ChAc RBCs, abnormal Lyn kinase activation in a Syk-independent fashion has been reported recently, resulting in increased band 3 tyrosine phosphorylation and perturbation of the stability of the multiprotein band 3-based complexes bridging the membrane to the spectrin-based membrane skeleton. Similarly, in MLS, the absence of XK-protein, which is associated with the spectrin-actin-4.1 junctional complex, is associated with an abnormal membrane protein phosphorylation state, with destabilization of the membrane skeletal network resulting in generation of acanthocytes.

Summary: A novel mechanism in generation of acanthocytes involving abnormal Lyn activation, identified in ChAc, expands the acanthocytosis phenomenon toward protein-protein interactions, controlled by phosphorylation-related abnormal signaling.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources