Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr;16(4):545-59.
doi: 10.1016/j.jcyt.2013.10.003.

Non-enzymatic dissociation of human mesenchymal stromal cells improves chemokine-dependent migration and maintains immunosuppressive function

Affiliations

Non-enzymatic dissociation of human mesenchymal stromal cells improves chemokine-dependent migration and maintains immunosuppressive function

Abhilok Garg et al. Cytotherapy. 2014 Apr.

Abstract

Background aims: Human bone marrow-derived mesenchymal stromal cells (MSC) can suppress inflammation; therefore their therapeutic potential is being explored in clinical trials. Poor engraftment of infused MSC limits their therapeutic utility; this may be caused by MSC processing before infusion, in particular the method of their detachment from culture.

Methods: Enzymatic methods of detaching MSC (Accutase and TrypLE) were compared with non-enzymatic methods (Cell Dissociation Buffer [CDB], ethylenediamine tetra-acetic acid and scraping) for their effect on MSC viability, chemokine receptor expression, multi-potency, immunomodulation and chemokine-dependent migration.

Results: TrypLE detachment preserved MSC viability and tri-lineage potential compared with non-enzymatic methods; however, this resulted in near complete loss of surface chemokine receptor expression. Of the non-enzymatic methods, CDB detachment preserved the highest viability while retaining significant tri-lineage differentiation potential. Once re-plated, CDB-detached MSC regained their original morphology and reached confluence, unlike with the use of other non-enzymatic methods. Viability was significantly reduced with the use of ethylenediamine tetra-acetic acid and further reduced with the use of cell scraping. Addition of 1% serum during CDB detachment led to higher MSC numbers entering autophagy and increased MSC recovery after re-plating. TrypLE and CDB-detached MSC suppressed CD3(+)CD4(+)CD25(-) T-cell proliferation, although TrypLE-detached MSC exhibited superior suppression at 1:20 ratio. CDB detachment retained surface chemokine receptor expression and consequently increased migration to CCL22, CXCL12 and CCL4, in contrast with TrypLE-detached MSC.

Conclusions: This study demonstrates that non-enzymatic detachment of MSC with the use of CDB minimizes the negative impact on cell viability, multipotency and immunomodulation while retaining chemokine-dependent migration, which may be of importance in MSC delivery and engraftment in sites of injury.

Keywords: chemokine receptors; differentiation; immune suppression; mesenchymal stromal cells; migration.

PubMed Disclaimer

Publication types

MeSH terms