Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun;26(6):1347-54.
doi: 10.1016/j.cellsig.2014.02.020. Epub 2014 Mar 12.

MicroRNA-363-mediated downregulation of S1PR1 suppresses the proliferation of hepatocellular carcinoma cells

Affiliations

MicroRNA-363-mediated downregulation of S1PR1 suppresses the proliferation of hepatocellular carcinoma cells

Peng Zhou et al. Cell Signal. 2014 Jun.

Abstract

S1PR1 plays a crucial role in promoting proliferation of hepatocellular carcinoma (HCC). Over expression of S1PR1 is observed in HCC cell lines. The mechanisms underlying the aberrant expression of S1PR1 are not known well. MircroRNAs are important regulators of gene expression and disproportionate microRNAs can result in dysregulation of oncogenes in cancer cells. In this study, we found that miR-363, a potential tumor suppressor microRNA, downregulated the expression of S1PR1 and inhibited the proliferation of HCC cells. Bioinformatic analysis predicted a putative binding site of miR-363 within the 3'-UTR of S1PR1 mRNA. Luciferase reporter assay showed that miR-363 directly targeted the 3'-UTR of S1PR1 mRNA. Transfection of miR-363 mimics suppressed S1PR1 expression in HCC cells, followed by the repression of the activation of ERK and STAT3. Moreover, we found that the expression of downstream genes of ERK and STAT3, including PDGF-A, PDGF-B, MCL-1 and Bcl-xL, was suppressed after miR-363 transfection. Taken together, the present study demonstrated that miR-363 was a negative regulator of S1PR1 expression in HCC cells and inhibited cell proliferation, suggesting that the miR-363/S1PR1 pathway might be a novel target for the treatment of HCC.

Keywords: Hepatocellular carcinoma; MicroRNA-363; Proliferation; Sphingosine-1-phosphate receptor-1.

PubMed Disclaimer

Publication types

MeSH terms