Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul 1:94:203-215.
doi: 10.1016/j.neuroimage.2014.03.001. Epub 2014 Mar 12.

Deconvolution of neural dynamics from fMRI data using a spatiotemporal hemodynamic response function

Affiliations

Deconvolution of neural dynamics from fMRI data using a spatiotemporal hemodynamic response function

K M Aquino et al. Neuroimage. .

Abstract

Functional magnetic resonance imaging (fMRI) is a powerful and broadly used means of non-invasively mapping human brain activity. However fMRI is an indirect measure that rests upon a mapping from neuronal activity to the blood oxygen level dependent (BOLD) signal via hemodynamic effects. The quality of estimated neuronal activity hinges on the validity of the hemodynamic model employed. Recent work has demonstrated that the hemodynamic response has non-separable spatiotemporal dynamics, a key property that is not implemented in existing fMRI analysis frameworks. Here both simulated and empirical data are used to demonstrate that using a physiologically based model of the spatiotemporal hemodynamic response function (stHRF) results in a quantitative improvement of the estimated neuronal response relative to unphysical space-time separable forms. To achieve this, an integrated spatial and temporal deconvolution is established using a recently developed stHRF. Simulated data allows the variation of key parameters such as noise and the spatial complexity of the neuronal drive, while knowing the neuronal input. The results demonstrate that the use of a spatiotemporally integrated HRF can avoid "ghost" neuronal responses that can otherwise be falsely inferred. Applying the spatiotemporal deconvolution to high resolution fMRI data allows the recovery of neuronal responses that are consistent with independent electrophysiological measures.

Keywords: BOLD; Deconvolution; HRF; Spatiotemporal; fMRI; stHRF.

PubMed Disclaimer

Publication types

LinkOut - more resources