Morphological comparison of the craniofacial phenotypes of mouse models expressing the Apert FGFR2 S252W mutation in neural crest- or mesoderm-derived tissues
- PMID: 24632501
- PMCID: PMC4018479
- DOI: 10.1016/j.bone.2014.03.003
Morphological comparison of the craniofacial phenotypes of mouse models expressing the Apert FGFR2 S252W mutation in neural crest- or mesoderm-derived tissues
Abstract
Bones of the craniofacial skeleton are derived from two distinct cell lineages, cranial neural crest and mesoderm, and articulate at sutures and synchondroses which represent major bone growth sites. Premature fusion of cranial suture(s) is associated with craniofacial dysmorphogenesis caused in part by alteration in the growth potential at sutures and can occur as an isolated birth defect or as part of a syndrome, such as Apert syndrome. Conditional expression of the Apert FGFR2 S252W mutation in cells derived from mesoderm was previously shown to be necessary and sufficient to cause coronal craniosynostosis. Here we used micro computed tomography images of mice expressing the Apert mutation constitutively in either mesoderm- or neural crest-derived cells to quantify craniofacial shape variation and suture fusion patterns, and to identify shape changes in craniofacial bones derived from the lineage not expressing the mutation, referred to here as secondary shape changes. Our results show that at postnatal day 0: (i) conditional expression of the FGFR2 S252W mutation in neural crest-derived tissues causes a more severe craniofacial phenotype than when expressed in mesoderm-derived tissues; and (ii) both mesoderm- and neural crest-specific mouse models display secondary shape changes. We also show that premature suture fusion is not necessarily dependent on the expression of the FGFR2 S252W mutation in the sutural mesenchyme. More specifically, it appears that suture fusion patterns in both mouse models are suture-specific resulting from a complex combination of the influence of primary abnormalities of biogenesis or signaling within the sutures, and timing.
Keywords: Apert syndrome; Craniosynostosis; FGFR2; Mesoderm; Neural crest; Suture fusion pattern.
Copyright © 2014 Elsevier Inc. All rights reserved.
Figures
References
-
- Jiang X, Iseki S, Maxson RE, Sucov HM, Morriss-Kay GM. Tissue origins and interactions in the mammalian skull vault. Dev Biol. 2002;241:106–16. - PubMed
-
- Yoshida T, Vivatbutsiri P, Morriss-Kay G, Saga Y, Iseki S. Cell lineage in mammalian craniofacial mesenchyme. Mech Dev. 2008;125:797–808. - PubMed
-
- Opperman LA. Cranial sutures as intramembranous bone growth sites. Dev Dyn. 2000;219:472–85. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous
