Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May;98(10):4653-61.
doi: 10.1007/s00253-014-5643-5. Epub 2014 Mar 18.

Bacteriophage-aided intracellular killing of engulfed methicillin-resistant Staphylococcus aureus (MRSA) by murine macrophages

Affiliations

Bacteriophage-aided intracellular killing of engulfed methicillin-resistant Staphylococcus aureus (MRSA) by murine macrophages

Sandeep Kaur et al. Appl Microbiol Biotechnol. 2014 May.

Abstract

Phages are known to effectively kill extracellularly multiplying bacteria as they do not have the ability of intracellular penetration within the animal cells. However, the present manuscript focuses on studying the impact of surface-adsorbed phage particles on the killing of engulfed Staphylococcus aureus inside phagocytic cells. Mouse peritoneal macrophages were isolated and cultured, followed by evaluation of their ability of bacterial uptake and killing. The intracellular killing potential of macrophages in the presence of unadsorbed free phage as well as phage adsorbed onto S. aureus 43300 was studied. Phage added alone to macrophage preparation did not influence intracellular killing of engulfed S. aureus by macrophages. However, phage adsorbed onto host bacterial cells (utilizing host bacteria as a vehicle to carry the lytic phage into the phagocytic compartment) brought about time-dependent and titre-dependent significant reduction in the number of viable intracellular cocci. Phage particles that shuttled inside the macrophage along with bacteria also significantly reduced cytotoxic damage caused by methicillin-resistant S. aureus (MRSA). This in turn enhanced the bactericidal killing potential of phagocytic cells. In earlier studies the inability of phages to kill intracellular bacteria has been thought to be a major drawback of phage therapy. For the first time results of this study confirm the killing ability of the broad host range lytic phage MR-5 of both extracellular as well as intracellular engulfed S. aureus inside macrophages. This approach shall not only restrict intracellular proliferation of staphylococci within the myeloid cells but also protect the host from further relapse of infection and treatment failures.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources