Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Feb;18(1):1-14.
doi: 10.4196/kjpp.2014.18.1.1. Epub 2014 Feb 13.

Advanced glycation end products and diabetic complications

Affiliations
Review

Advanced glycation end products and diabetic complications

Varun Parkash Singh et al. Korean J Physiol Pharmacol. 2014 Feb.

Abstract

During long standing hyperglycaemic state in diabetes mellitus, glucose forms covalent adducts with the plasma proteins through a non-enzymatic process known as glycation. Protein glycation and formation of advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic complications like retinopathy, nephropathy, neuropathy, cardiomyopathy along with some other diseases such as rheumatoid arthritis, osteoporosis and aging. Glycation of proteins interferes with their normal functions by disrupting molecular conformation, altering enzymatic activity, and interfering with receptor functioning. AGEs form intra- and extracellular cross linking not only with proteins, but with some other endogenous key molecules including lipids and nucleic acids to contribute in the development of diabetic complications. Recent studies suggest that AGEs interact with plasma membrane localized receptors for AGEs (RAGE) to alter intracellular signaling, gene expression, release of pro-inflammatory molecules and free radicals. The present review discusses the glycation of plasma proteins such as albumin, fibrinogen, globulins and collagen to form different types of AGEs. Furthermore, the role of AGEs in the pathogenesis of diabetic complications including retinopathy, cataract, neuropathy, nephropathy and cardiomyopathy is also discussed.

Keywords: Advanced glycation end-products; Diabetic complications; Inflammation; Oxidative stress; Plasma proteins.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Persistently elevated glucose levels during long standing diabetes induce structural and functional changes in different protein in the body including albumin, globulins, fibrinogen and collagens. Glycation of these proteins is associated with induction of deleterious changes in the body.
Fig. 2
Fig. 2
Formation of advanced glycation end products in three stages i.e., early, intermediate and late stage involving (AGEs). In an early stage, sugars react with a free amino group to form Schiff base which undergoes a rearrangement to a more stable product known as amadori product. In an intermediate stage, amadori product degrades to a variety of reactive dicarbonyl compounds. In the late stage of the glycation process AGEs (irreversible compounds) are formed.
Fig. 3
Fig. 3
Interaction of AGE with RAGE leading to oxidative stress and initiation of inflammation cascade involving activation of MAPK pathway, NF-kB, IL-6, TNF-α, expression of ICAM-1 and VCAM-2 which ultimately leads to diabetic complications.

References

    1. Forbes JM, Soldatos G, Thomas MC. Below the radar: advanced glycation end products that detour "around the side". Is HbA1c not an accurate enough predictor of long term progression and glycaemic control in diabetes? Clin Biochem Rev. 2005;26:123–134. - PMC - PubMed
    1. Jang C, Lim JH, Park CW, Cho YJ. Regulator of Calcineurin 1 Isoform 4 Is Overexpressed in the Glomeruli of Diabetic Mice. Korean J Physiol Pharmacol. 2011;15:299–305. - PMC - PubMed
    1. Heilig CW, Concepcion LA, Riser BL, Freytag SO, Zhu M, Cortes P. Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest. 1995;96:1802–1814. - PMC - PubMed
    1. Fraser DA, Hansen KF. Making sense of advanced glycation end products and their relevance to diabetic complications. Inter Diabetes Monitor. 2005;17:1–7.
    1. Negre-Salvayre A, Salvayre R, Augé N, Pamplona R, Portero-Otín M. Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal. 2009;11:3071–3109. - PubMed