Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Feb;124(2):964-70.
doi: 10.1210/endo-124-2-964.

Stimulation of collagen formation by insulin and insulin-like growth factor I in cultures of human lung fibroblasts

Affiliations

Stimulation of collagen formation by insulin and insulin-like growth factor I in cultures of human lung fibroblasts

R H Goldstein et al. Endocrinology. 1989 Feb.

Abstract

We examined the effects of insulin and insulin-like growth factor I (IGF-I) on the production of collagen by cultures of human embryonic lung fibroblasts. Insulin at 20 ng/ml increased collagen accumulation by 58% and total protein formation by 18%. At 2 micrograms/ml, insulin increased collagen production by 2- to 3-fold and total protein production by 2-fold. The mRNA levels for alpha 1(I) and alpha 1(III) collagen chains were elevated by insulin compared with untreated control values. IGF-I at 10 ng/ml increased collagen production 2-fold. IGF-I at 100 ng/ml maximally increased collagen production 3-fold. A specific antibody to the IGF-I receptor (alpha IR-3) caused a concentration-related decline in insulin-induced collagen formation. The addition of antibody at 1 micrograms/ml, resulted in 80% inhibition of insulin-induced collagen accumulation. Higher levels of antibody were required to inhibit IGF-I mediated collagen formation. The presence of antibody (alpha IR-3) also blocked fibroblast proliferation stimulated by epidermal growth factor plus insulin. These data show that insulin-induced collagen formation is mediated primarily through an interaction with the IGF-I receptor. The modulation of extracellular matrix production by insulin may influence the repair of tissue injury and the development of the accelerated atherosclerosis that accompanies the diabetic state in humans.

PubMed Disclaimer

Publication types

LinkOut - more resources