Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Oct:29:15-23.
doi: 10.1016/j.copbio.2014.02.008. Epub 2014 Mar 16.

Single-cell microfluidics: opportunity for bioprocess development

Affiliations
Review

Single-cell microfluidics: opportunity for bioprocess development

Alexander Grünberger et al. Curr Opin Biotechnol. 2014 Oct.

Abstract

Cell-to-cell heterogeneity in microbial biotechnological processes caused by biological (intrinsic) and environmental (extrinsic) fluctuations can have a severe impact on productivity. However, as yet little is known about the complex interplay between environmental reactor dynamics and cellular activity. A few years ago, innovative microfluidic systems were introduced facilitating the spatiotemporal analysis of single cells under well-defined environmental conditions allowing so far unachievable insights into population heterogeneity and bioreactor inhomogeneity. Examples of microfabricated systems include microfluidic cavities harbouring micropopulations of several thousand cells down to femtolitre-size structures entrapping individual bacteria. In well-defined perfusion experiments, central questions in biotechnology regarding, for example, growth, productivity, and heterogeneity on the single-cell level have been addressed for the first time. Microfluidics will take its place as a single-cell analytical technique in biotechnological process and strain characterization.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources