Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries
- PMID: 24648261
- DOI: 10.1002/cssc.201301198
Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries
Abstract
All high-capacity anodes for lithium-ion (Li-ion) batteries, such as those based on tin (Sn) and silicon (Si), suffer from large volume changes during cycling with lithium ions, and their high capacities can be only achieved in the first few cycles. We design and synthesize a unique four-layer yolk-shell tin-carbon (Sn-C) nanotube array to address this problem. The shape and size of the exterior Sn nanotube@carbon core-shell layer, the encapsulated interior Sn nanowire@carbon nanotube core-shell layer, and the filling level of each layer can be all controlled by adjusting the experimental conditions. Such a nanostructure has not been reported for any metal or metal oxide-based material. Owing to the special design of the electrode structure, the four-layer hierarchical structure demonstrates excellent Li-ion storage properties in terms of high capacity, long cycle life, and high rate performance.
Keywords: batteries; carbon nanotubes; lithium; tin; yolk-shell nanostructures.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources