Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun;103(6):1638-42.
doi: 10.1002/jps.23946. Epub 2014 Mar 19.

Iontophoretic drug delivery for the treatment of scars

Affiliations

Iontophoretic drug delivery for the treatment of scars

Prashanth Manda et al. J Pharm Sci. 2014 Jun.

Abstract

Topical treatment of hypertrophic scars is challenging because of poor penetrability of drugs into the scar tissue. The objective of the study was to investigate the effectiveness of iontophoresis to deliver medicaments across the scar epidermis. Initially, biophysical studies were performed to investigate the differences between scar and normal skin epidermis obtained from cadaver. In case of scar skin epidermis, the transepidermal water loss was not significantly different from the normal skin epidermis, whereas the electrical resistivity was significantly higher. The passive permeation flux of sodium fluorescein was approximately one-third of that across the normal skin epidermis. Scanning electron microscopy studies revealed that the two membranes were alike except that the scar skin epidermis lacked follicles. Cathodal iontophoresis enhanced the delivery of sodium fluorescein across the scar skin epidermis by approximately 46 folds [51.90 ± 8.82 ng/(cm(2) h)]. However, the transport of sodium fluorescein across the scar skin epidermis was about an order of magnitude less than the normal skin epidermis. Overall, the studies suggest that iontophoresis could be utilized to overcome the barrier resistance of scar skin epidermis and treat the scar regionally.

Keywords: active transport; drug transport; iontophoresis; passive diffusion/transport; skin; transdermal drug delivery.

PubMed Disclaimer

LinkOut - more resources