Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Mar 21:14:53.
doi: 10.1186/1471-2377-14-53.

Clinical factors associated with statins prescription in acute ischemic stroke patients: findings from the Lombardia Stroke Registry

Collaborators, Affiliations

Clinical factors associated with statins prescription in acute ischemic stroke patients: findings from the Lombardia Stroke Registry

Isabella Canavero et al. BMC Neurol. .

Abstract

Background: Statins, due to their well-established pleiotropic effects, have noteworthy benefits in stroke prevention. Despite this, a significant proportion of high-risk patients still do not receive the recommended therapeutic regimens, and many others discontinue treatment after being started on them. The causes of non-adherence to current guidelines are multifactorial, and depend on both physicians and patients. The aim of this study is to identify the factors influencing statin prescription at Stroke Unit (SU) discharge.

Methods: This study included 12,750 patients enrolled on the web-based Lombardia Stroke Registry (LRS) from July 2009 to April 2012 and discharged alive, with a diagnosis of ischemic stroke or transient ischemic attack (TIA) and without contra-indication to statin therapy. By logistic regression analysis and classification trees, we evaluated the impact of demographic data, risk factors, tPA treatment, in-hospital procedures and complications on statin prescription rate at discharge.

Results: We observed a slight increase in statins prescription during the study period (from 39.1 to 43.9%). Lower age, lower stroke severity and prestroke disability, the presence of atherothrombotic/lacunar risk factors, a diagnosis of non-cardioembolic stroke, tPA treatment, the absence of in-hospital complications, with the sole exception of hypertensive fits and hyperglycemia, were the patient-related predictors of adherence to guidelines by physicians. Overall, dyslipidemia appears as the leading factor, while TOAST classification does not reach statistical significance.

Conclusions: In our region, Lombardia, adherence to guidelines in statin prescription at Stroke Unit discharge is very different from international goals. The presence of dyslipidemia remains the main factor influencing statin prescription, while the presence of well-defined atherosclerotic etiopathogenesis of stroke does not enhance statin prescription. Some uncertainties about the risk/benefit of statin therapy in stroke etiology subtypes (cardioembolism, other or undetermined causes) may partially justify the underuse of statin in ischemic stroke. The differences that exist between current international guidelines may prevent a more widespread use of statin and should be clarified in a consensus.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Statin prescription (red: presence, blue: absence) according to stroke etiology.
Figure 2
Figure 2
The classification tree graph. (legend) The classification tree obtained using the most predictive variables according to the logistic regression analysis, and depicting paths leading to higher/lower prescription probability. The yellow box explains how to read a classification tree graph. The root node shows that, in the whole sample, the most represented class is Statin- (57.7%). Moreover, it shows that the most important variable distinguishing the two classes is Dyslipidemia: when present, 71.3% of patients receive statins at discharge; when absent, only 35.7% (100–64.3) of patients undergo the prescription.
Figure 3
Figure 3
Classification tree graph for the subgroup Large Vessels Disease (LVD).

References

    1. Calabrò P, Yeh ET. The pleiotropic effects of statins. Curr Opin Cardiol. 2005;20(6):541–6. doi: 10.1097/01.hco.0000181482.99067.bf. - DOI - PubMed
    1. Stead LG, Vaidyanathan L, Kumar G, Bellolio MF, Brown RD, Suravaram S, Enduri S, Gilmore RM, Decker WW. Statins in ischemic stroke: just low-density lipoprotein lowering or more? J Stroke Cerebrovasc. 2009;18(2):124–127. doi: 10.1016/j.jstrokecerebrovasdis.2008.09.016. - DOI - PubMed
    1. Prinz V, Endres M. Statins and stroke: prevention and beyond. Curr Opin Neurol. 2011;24(1):75–80. doi: 10.1097/WCO.0b013e3283424c53. - DOI - PubMed
    1. Cimino M, Gelosa P, Gianella A, Nobili E, Tremoli E, Sironi L. Statins: multiple mechanisms of action in the ischemic brain. Neuroscientist. 2007;13(3):208–13. doi: 10.1177/1073858406297121. - DOI - PubMed
    1. Amarenco P, Bogousslavsky J, Callahan A 3rd, Goldstein LB, Hennerici M, Rudolph AE, Sillesen H, Simunovic L, Szarek M, Welch KM, Zivin JA. Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) Investigators. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med. 2006;355(6):549–59. - PubMed

Substances