Application of Brownian motion theory to the analysis of membrane channel ionic trajectories calculated by molecular dynamics
- PMID: 2465032
- PMCID: PMC1330381
- DOI: 10.1016/S0006-3495(88)83012-1
Application of Brownian motion theory to the analysis of membrane channel ionic trajectories calculated by molecular dynamics
Abstract
This paper shows how Brownian motion theory can be used to analyze features of individual ion trajectories in channels as calculated by molecular dynamics, and that its use permits more precise determinations of diffusion coefficients than would otherwise be possible. We also show how a consideration of trajectories of single particles can distinguish between effects due to the magnitude of the diffusion coefficient and effects due to barriers and wells in the potential profile, effects which can not be distinguished by consideration of average fluxes.
Similar articles
-
Ion permeation through the gramicidin channel: atomically detailed modeling by the Stochastic Difference Equation.Proteins. 2003 Jan 1;50(1):63-80. doi: 10.1002/prot.10256. Proteins. 2003. PMID: 12471600
-
Stochastic theory of ion movement in channels with single-ion occupancy. Application to sodium permeation of gramicidin channels.Biophys J. 1987 Jul;52(1):33-45. doi: 10.1016/S0006-3495(87)83186-7. Biophys J. 1987. PMID: 2440492 Free PMC article.
-
Simulation of voltage-driven hydrated cation transport through narrow transmembrane channels.Biophys J. 1987 Jun;51(6):977-83. doi: 10.1016/S0006-3495(87)83425-2. Biophys J. 1987. PMID: 2440486 Free PMC article.
-
Gramicidin channels.Annu Rev Physiol. 1984;46:531-48. doi: 10.1146/annurev.ph.46.030184.002531. Annu Rev Physiol. 1984. PMID: 6201133 Review. No abstract available.
-
Theoretical perspectives on ion-channel electrostatics: continuum and microscopic approaches.Q Rev Biophys. 1992 Nov;25(4):477-510. doi: 10.1017/s0033583500004388. Q Rev Biophys. 1992. PMID: 1284092 Review. No abstract available.
Cited by
-
Brownian dynamics study of a multiply-occupied cation channel: application to understanding permeation in potassium channels.Biophys J. 1994 Apr;66(4):1028-38. doi: 10.1016/S0006-3495(94)80884-7. Biophys J. 1994. PMID: 7518703 Free PMC article.
-
Stochastic theory of singly occupied ion channels. II. Effects of access resistance and potential gradients extending into the bath.Biophys J. 1989 Jan;55(1):147-57. doi: 10.1016/S0006-3495(89)82786-9. Biophys J. 1989. PMID: 2467695 Free PMC article.
-
The nature of ion and water barrier crossings in a simulated ion channel.Biophys J. 1993 Jan;64(1):98-109. doi: 10.1016/S0006-3495(93)81344-4. Biophys J. 1993. PMID: 7679301 Free PMC article.
-
Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels.Biophys J. 1991 Jul;60(1):273-85. doi: 10.1016/S0006-3495(91)82049-5. Biophys J. 1991. PMID: 1715766 Free PMC article.
-
Electrostatics of a simple membrane model using Green's functions formalism.Biophys J. 1996 Aug;71(2):795-810. doi: 10.1016/S0006-3495(96)79281-0. Biophys J. 1996. PMID: 8842218 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources