Ophthalmic magnetic resonance imaging at 7 T using a 6-channel transceiver radiofrequency coil array in healthy subjects and patients with intraocular masses
- PMID: 24651662
- DOI: 10.1097/RLI.0000000000000049
Ophthalmic magnetic resonance imaging at 7 T using a 6-channel transceiver radiofrequency coil array in healthy subjects and patients with intraocular masses
Abstract
Objectives: This study was designed to examine the feasibility of ophthalmic magnetic resonance imaging (MRI) at 7 T using a local 6-channel transmit/receive radiofrequency (RF) coil array in healthy volunteers and patients with intraocular masses.
Materials and methods: A novel 6-element transceiver RF coil array that makes uses of loop elements and that is customized for eye imaging at 7 T is proposed. Considerations influencing the RF coil design and the characteristics of the proposed RF coil array are presented. Numerical electromagnetic field simulations were conducted to enhance the RF coil characteristics. Specific absorption rate simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Phantom experiments were carried out to validate the electromagnetic field simulations and to assess the real performance of the proposed transceiver array. Certified approval for clinical studies was provided by a local notified body before the in vivo studies. The suitability of the RF coil to image the human eye, optical nerve, and orbit was examined in an in vivo feasibility study including (a) 3-dimensional (3D) gradient echo (GRE) imaging, (b) inversion recovery 3D GRE imaging, and (c) 2D T2-weighted fast spin-echo imaging. For this purpose, healthy adult volunteers (n = 17; mean age, 34 ± 11 years) and patients with intraocular masses (uveal melanoma, n = 5; mean age, 57 ± 6 years) were investigated.
Results: All subjects tolerated all examinations well with no relevant adverse events. The 6-channel coil array supports high-resolution 3D GRE imaging with a spatial resolution as good as 0.2 × 0.2 × 1.0 mm, which facilitates the depiction of anatomical details of the eye. Rather, uniform signal intensity across the eye was found. A mean signal-to-noise ratio of approximately 35 was found for the lens, whereas the vitreous humor showed a signal-to-noise ratio of approximately 30. The lens-vitreous humor contrast-to-noise ratio was 8, which allows good differentiation between the lens and the vitreous compartment. Inversion recovery prepared 3D GRE imaging using a spatial resolution of 0.4 × 0.4 × 1.0 mm was found to be feasible. T2-weighted 2D fast spin-echo imaging with the proposed RF coil afforded a spatial resolution of 0.25 × 0.25 × 0.7 mm.
Conclusions: This work provides valuable information on the feasibility of ophthalmic MRI at 7 T using a dedicated 6-channel transceiver coil array that supports the acquisition of high-contrast, high-spatial resolution images in healthy volunteers and patients with intraocular masses. The results underscore the challenges of ocular imaging at 7 T and demonstrate that these issues can be offset by using tailored RF coil hardware. The benefits of such improvements would be in positive alignment with explorations that are designed to examine the potential of MRI for the assessment of spatial arrangements of the eye segments and their masses with the ultimate goal to provide imaging means for guiding treatment decisions in ophthalmological diseases.
Similar articles
-
Diffusion-sensitized ophthalmic magnetic resonance imaging free of geometric distortion at 3.0 and 7.0 T: a feasibility study in healthy subjects and patients with intraocular masses.Invest Radiol. 2015 May;50(5):309-21. doi: 10.1097/RLI.0000000000000129. Invest Radiol. 2015. PMID: 25612144
-
Sodium MRI of the human heart at 7.0 T: preliminary results.NMR Biomed. 2015 Aug;28(8):967-75. doi: 10.1002/nbm.3338. Epub 2015 Jun 17. NMR Biomed. 2015. PMID: 26082025
-
Skin sodium measured with ²³Na MRI at 7.0 T.NMR Biomed. 2015 Jan;28(1):54-62. doi: 10.1002/nbm.3224. Epub 2014 Oct 18. NMR Biomed. 2015. PMID: 25328128
-
Ultra-high-field MRI of the musculoskeletal system at 7.0T.J Magn Reson Imaging. 2007 Feb;25(2):262-9. doi: 10.1002/jmri.20814. J Magn Reson Imaging. 2007. PMID: 17260399 Review.
-
[Ophthalmological imaging with ultrahigh field magnetic resonance tomography: technical innovations and frontier applications].Klin Monbl Augenheilkd. 2014 Dec;231(12):1187-95. doi: 10.1055/s-0034-1383365. Epub 2014 Dec 17. Klin Monbl Augenheilkd. 2014. PMID: 25519506 Review. German.
Cited by
-
The Economic Value of MR-Imaging for Uveal Melanoma.Clin Ophthalmol. 2020 Apr 28;14:1135-1143. doi: 10.2147/OPTH.S238405. eCollection 2020. Clin Ophthalmol. 2020. PMID: 32425499 Free PMC article.
-
Clinical evaluation of ultra-high-field MRI for three-dimensional visualisation of tumour size in uveal melanoma patients, with direct relevance to treatment planning.MAGMA. 2016 Jun;29(3):571-7. doi: 10.1007/s10334-016-0529-4. Epub 2016 Feb 25. MAGMA. 2016. PMID: 26915081 Free PMC article.
-
Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management.EPMA J. 2015 Aug 27;6(1):16. doi: 10.1186/s13167-015-0038-y. eCollection 2015. EPMA J. 2015. PMID: 26312125 Free PMC article. Review.
-
Metabolite profiling in retinoblastoma identifies novel clinicopathological subgroups.Br J Cancer. 2015 Oct 20;113(8):1216-24. doi: 10.1038/bjc.2015.318. Epub 2015 Sep 8. Br J Cancer. 2015. PMID: 26348444 Free PMC article.
-
Silent volumetric multi-contrast 7 Tesla MRI of ocular tumors using Zero Echo Time imaging.PLoS One. 2019 Sep 16;14(9):e0222573. doi: 10.1371/journal.pone.0222573. eCollection 2019. PLoS One. 2019. PMID: 31525248 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical