Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Mar 28;10(12):1987-2007.
doi: 10.1039/c3sm52277f.

An electric-field induced dynamical state in dispersions of charged colloidal rods

Affiliations
Free article

An electric-field induced dynamical state in dispersions of charged colloidal rods

Jan K G Dhont et al. Soft Matter. .
Free article

Erratum in

Abstract

The response of concentrated dispersions of charged colloids to low-frequency electric fields is governed by field-induced inter-colloidal interactions resulting from the polarization of electric double layers and the layer of condensed ions, association and dissociation of condensed ions, as well as hydrodynamic interactions through field-induced electro-osmotic flow. The phases and states that can be formed by such field-induced interactions are an essentially unexplored field of research. Experiments on concentrated suspensions of rod-like colloids (fd-virus particles), within the isotropic-nematic phase coexistence region, showed that a number of phases/states are induced, depending on the field amplitude and frequency [Soft Matter, 2010, 6, 273]. In particular, a dynamical state is found where nematic domains form and melt on a time scale of the order of seconds. We discuss the microscopic origin of this dynamical state, which is attributed to the cyclic, electric-field induced dissociation and association of condensed ions. A semi-quantitative theory is presented for the dynamics of melting and formation of nematic domains, including a model for the field-induced dissociation/association of condensed ions. The resulting equation of motion for the orientational order parameter is solved numerically for parameters complying with the fd-virus system. A limit-cycle is found, with a cycling-time that diverges at the transition line in the field-amplitude versus frequency plane where the dynamical state first appears, in accord with experimental findings.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources