Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Jul;71(14):2707-15.
doi: 10.1007/s00018-014-1601-8. Epub 2014 Mar 21.

Single-cell analysis of the transcriptome and its application in the characterization of stem cells and early embryos

Affiliations
Review

Single-cell analysis of the transcriptome and its application in the characterization of stem cells and early embryos

Na Liu et al. Cell Mol Life Sci. 2014 Jul.

Abstract

Cellular heterogeneity within a cell population is a common phenomenon in multicellular organisms, tissues, cultured cells, and even FACS-sorted subpopulations. Important information may be masked if the cells are studied as a mass. Transcriptome profiling is a parameter that has been intensively studied, and relatively easier to address than protein composition. To understand the basis and importance of heterogeneity and stochastic aspects of the cell function and its mechanisms, it is essential to examine transcriptomes of a panel of single cells. High-throughput technologies, starting from microarrays and now RNA-seq, provide a full view of the expression of transcriptomes but are limited by the amount of RNA for analysis. Recently, several new approaches for amplification and sequencing the transcriptome of single cells or a limited low number of cells have been developed and applied. In this review, we summarize these major strategies, such as PCR-based methods, IVT-based methods, phi29-DNA polymerase-based methods, and several other methods, including their principles, characteristics, advantages, and limitations, with representative applications in cancer stem cells, early development, and embryonic stem cells. The prospects for development of future technology and application of transcriptome analysis in a single cell are also discussed.

PubMed Disclaimer

References

    1. Irish JM, Kotecha N, Nolan GP. Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat Rev Cancer. 2006;6(2):146–155. doi: 10.1038/nrc1804. - DOI - PubMed
    1. Graf T, Stadtfeld M. Heterogeneity of embryonic and adult stem cells. Cell Stem Cell. 2008;3(5):480–483. doi: 10.1016/j.stem.2008.10.007. - DOI - PubMed
    1. Huang S. Non-genetic heterogeneity of cells in development: more than just noise. Development. 2009;136(23):3853–3862. doi: 10.1242/dev.035139. - DOI - PMC - PubMed
    1. Shackleton M, et al. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138(5):822–829. doi: 10.1016/j.cell.2009.08.017. - DOI - PubMed
    1. Turner NC, Reis-Filho JS. Genetic heterogeneity and cancer drug resistance. Lancet Oncol. 2012;13(4):e178–e185. doi: 10.1016/S1470-2045(11)70335-7. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources