A simulation protocol for exercise physiology in Fontan patients using a closed loop lumped-parameter model
- PMID: 24658635
- PMCID: PMC5101033
- DOI: 10.1115/1.4027271
A simulation protocol for exercise physiology in Fontan patients using a closed loop lumped-parameter model
Erratum in
- J Biomech Eng. 2014;136(10):107001
Abstract
Background: Reduced exercise capacity is nearly universal among Fontan patients, though its etiology is not yet fully understood. While previous computational studies have attempted to model Fontan exercise, they did not fully account for global physiologic mechanisms nor directly compare results against clinical and physiologic data.
Methods: In this study, we developed a protocol to simulate Fontan lower-body exercise using a closed-loop lumped-parameter model describing the entire circulation. We analyzed clinical exercise data from a cohort of Fontan patients, incorporated previous clinical findings from literature, quantified a comprehensive list of physiological changes during exercise, translated them into a computational model of the Fontan circulation, and designed a general protocol to model Fontan exercise behavior. Using inputs of patient weight, height, and if available, patient-specific reference heart rate (HR) and oxygen consumption, this protocol enables the derivation of a full set of parameters necessary to model a typical Fontan patient of a given body-size over a range of physiologic exercise levels.
Results: In light of previous literature data and clinical knowledge, the model successfully produced realistic trends in physiological parameters with exercise level. Applying this method retrospectively to a set of clinical Fontan exercise data, direct comparison between simulation results and clinical data demonstrated that the model successfully reproduced the average exercise response of a cohort of typical Fontan patients.
Conclusion: This work is intended to offer a foundation for future advances in modeling Fontan exercise, highlight the needs in clinical data collection, and provide clinicians with quantitative reference exercise physiologies for Fontan patients.
Figures







Similar articles
-
Predictive modeling of the virtual Hemi-Fontan operation for second stage single ventricle palliation: two patient-specific cases.J Biomech. 2013 Jan 18;46(2):423-9. doi: 10.1016/j.jbiomech.2012.10.023. Epub 2012 Nov 20. J Biomech. 2013. PMID: 23174419
-
Enhanced physiology for submaximal exercise in children after the fontan procedure.Med Sci Sports Exerc. 2013 Apr;45(4):615-21. doi: 10.1249/MSS.0b013e31827b0b20. Med Sci Sports Exerc. 2013. PMID: 23190591
-
Body Composition and Exercise Performance in Youth With a Fontan Circulation: A Bio-Impedance Based Study.J Am Heart Assoc. 2020 Dec 15;9(24):e018345. doi: 10.1161/JAHA.120.018345. Epub 2020 Dec 8. J Am Heart Assoc. 2020. PMID: 33289459 Free PMC article.
-
Exercise capacity and impact of exercise training in patients after a Fontan procedure: a review.Can J Cardiol. 2006 May 1;22(6):489-95. doi: 10.1016/s0828-282x(06)70266-5. Can J Cardiol. 2006. PMID: 16685313 Free PMC article. Review.
-
Leveraging Preclinical Modeling for Clinical Advancements in Single Ventricle Physiology: Spotlight on the Fontan Circulation.Annu Rev Biomed Eng. 2025 May;27(1):449-472. doi: 10.1146/annurev-bioeng-102723-013709. Epub 2025 Mar 3. Annu Rev Biomed Eng. 2025. PMID: 40030078 Review.
Cited by
-
Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease.Biophys Rev (Melville). 2023 Mar;4(1):011301. doi: 10.1063/5.0109400. Epub 2023 Jan 13. Biophys Rev (Melville). 2023. PMID: 36686891 Free PMC article. Review.
-
A computational study of aortic reconstruction in single ventricle patients.Biomech Model Mechanobiol. 2023 Feb;22(1):357-377. doi: 10.1007/s10237-022-01650-w. Epub 2022 Nov 5. Biomech Model Mechanobiol. 2023. PMID: 36335184 Free PMC article.
-
Parameter inference in a computational model of haemodynamics in pulmonary hypertension.J R Soc Interface. 2023 Mar;20(200):20220735. doi: 10.1098/rsif.2022.0735. Epub 2023 Mar 1. J R Soc Interface. 2023. PMID: 36854380 Free PMC article.
-
Hemodynamic performance of tissue-engineered vascular grafts in Fontan patients.NPJ Regen Med. 2021 Jul 22;6(1):38. doi: 10.1038/s41536-021-00148-w. NPJ Regen Med. 2021. PMID: 34294733 Free PMC article.
-
Computational fluid dynamics modelling in cardiovascular medicine.Heart. 2016 Jan;102(1):18-28. doi: 10.1136/heartjnl-2015-308044. Epub 2015 Oct 28. Heart. 2016. PMID: 26512019 Free PMC article. Review.
References
-
- Gewillig, M. H. , Lundstr€om, U. R. , Bull, C. , Wyse, R. K. , and Deanfield, J. E. , 1990, “Exercise Responses in Patients With Congenital Heart Disease After Fontan Repair: Patterns and Determinants of Performance,” J. Am. Coll. Cardiol., 15(6), pp. 1424–1432.10.1016/S0735-1097(10)80034-8 - DOI - PubMed
-
- Durongpisitkul, K. , Driscoll, D. J. , Mahoney, D. W. , Wollan, P. C. , Mottram, C. D. , Puga, F. J. , and Danielson, G. K. , 1997, “Cardiorespiratory Response to Exercise After Modified Fontan Operation: Determinants of Performance,” J. Am. Coll. Cardiol., 29(4), pp. 785–790.10.1016/S0735-1097(96)00568-2 - DOI - PubMed
-
- Yang, W. , Vignon-Clementel, I. E. , Troianowski, G. , Reddy, V. M. , Feinstein, J. A. , and Marsden, A. L. , 2011, “Hepatic Blood Flow Distribution and Performance in Conventional and Novel Y-Graft Fontan Geometries: A Case Series Computational Fluid Dynamics Study,” J. Thorac. Cardiovasc. Surg., 143, pp. 1086–1097. - PubMed
-
- Whitehead, K. K. , Pekkan, K. , Kitajima, H. D. , Paridon, S. M. , Yoganathan, A. P. , and Fogel, M. A. , 2007, “Nonlinear Power Loss During Exercise in Single-Ventricle Patients After the Fontan: Insights From Computational Fluid Dynamics,” Circulation, 116(11 Suppl), pp. I165–I171. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical