High methane storage capacity in aluminum metal-organic frameworks
- PMID: 24661065
- PMCID: PMC4210148
- DOI: 10.1021/ja501606h
High methane storage capacity in aluminum metal-organic frameworks
Abstract
The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and methane adsorption properties of two new aluminum metal-organic frameworks, MOF-519 and MOF-520. Both materials exhibit permanent porosity and high methane volumetric storage capacity: MOF-519 has a volumetric capacity of 200 and 279 cm(3) cm(-3) at 298 K and 35 and 80 bar, respectively, and MOF-520 has a volumetric capacity of 162 and 231 cm(3) cm(-3) under the same conditions. Furthermore, MOF-519 exhibits an exceptional working capacity, being able to deliver a large amount of methane at pressures between 5 and 35 bar, 151 cm(3) cm(-3), and between 5 and 80 bar, 230 cm(3) cm(-3).
Figures




References
-
- Methane Opportunities for Vehicular Energy, Advanced Research Project Agency – Energy, U.S. Dept. of Energy, Funding Opportunity No. DE-FOA-0000672, 2012. https://arpa-e-foa.energy.gov/Default.aspx?Search=DE-FOA-0000672 (accessed on March 17, 2014).
-
- Furukawa H.; Cordova K. E.; O’Keeffe M.; Yaghi O. M. Science 2013, 341, 974. - PubMed
- Science 2013, 341, 1230444. - PubMed
- Cook T. R.; Zheng Y.-R.; Stang P. J. Chem. Rev. 2013, 113, 734. - PMC - PubMed
- McKinlay A. C.; Morris R. E.; Horcajada P.; Ferey G.; Gref R.; Couvreur P.; Serre C. Angew. Chem., Int. Ed. 2010, 49, 6260. - PubMed
- Mueller U.; Schubert M.; Teich F.; Puetter H.; Schierle-Arndt K.; Pastre J. J. Mater. Chem. 2006, 16, 626.
- Shimizu G. K. H.; Vaidhyanathan R.; Taylor J. M. Chem. Soc. Rev. 2009, 38, 1430. - PubMed
- Corma A.; Garcia H.; Llabres i Xamena F. X. Chem. Rev. 2010, 110, 4606. - PubMed
- Meek S. T.; Greathouse J. A.; Allendorf M. D. Adv. Mater. 2011, 23, 249. - PubMed
- Kitagawa S.; Kitaura R.; Noro S. Angew. Chem., Int. Ed. 2004, 43, 2334. - PubMed
-
- Murray L. J; Dincă M.; Long J. R. Chem. Soc. Rev. 2009, 38, 1294. - PubMed
- Suh M.; Park H.; Prasad T.; Lim D. Chem. Rev. 2012, 112, 782. - PubMed
- Caskey S. R.; Wong-Foy A. G.; Matzger A. J. J. Am. Chem. Soc. 2008, 130, 10870. - PubMed
- Lin X.; Jia J.; Zhao X.; Thomas K. M.; Blake A. J.; Walker G. S.; Champness N. R.; Hubberstey P.; Schroeder M. Angew. Chem., Int. Ed. 2006, 45, 7358. - PubMed
- Yang S.; Lin X.; Lewis W.; Suyetin M.; Bichoutskaia E.; Parker J. E.; Tang C. C.; Allan D. R.; Rizkallah P. J.; Hubberstey P.; Champness N. R.; Thomas K. M.; Blake A. J.; Schröeder M. Nat. Mater. 2012, 11, 710. - PubMed
- Xiang S.; He Y.; Zhang Z.; Wu H.; Zhou W.; Krishna R.; Chen B. Nat. Commun. 2012, 3, 956. - PubMed
- Li T.; Chen D.-L.; Sullivan J. E.; Kozlowski M. T.; Johnson J. K.; Rosi N. L. Chem. Sci. 2013, 4, 1746.
-
- Noro S.; Kitagawa S.; Kondo M.; Seki K. Angew. Chem., Int. Ed. 2000, 39, 2082. - PubMed
- Eddaoudi M.; Kim J.; Rosi N.; Vodak D.; Wachter J.; O’Keeffe M.; Yaghi O. M. Science 2002, 295, 469. - PubMed
- Makal T.; Li J.; Lu W.; Zhou H. Chem. Soc. Rev. 2012, 41, 7761. - PubMed
- Konstas K.; Osl T.; Yang Y.; Batten M.; Burke N.; Hill A. J.; Hill M. R. J. Mater. Chem. 2012, 22, 16698.
- Stoeck U.; Krause S.; Bon V.; Senkovska I.; Kaskel S. Chem. Commun. 2012, 48, 10841. - PubMed
-
- Chui S. S.-Y.; Lo S. M.-F.; Charmant J. P. H.; Orpen A. G.; Williams I. D. Science 1999, 283, 1148. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources