Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr 9;136(14):5271-4.
doi: 10.1021/ja501606h. Epub 2014 Mar 24.

High methane storage capacity in aluminum metal-organic frameworks

Affiliations

High methane storage capacity in aluminum metal-organic frameworks

Felipe Gándara et al. J Am Chem Soc. .

Abstract

The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and methane adsorption properties of two new aluminum metal-organic frameworks, MOF-519 and MOF-520. Both materials exhibit permanent porosity and high methane volumetric storage capacity: MOF-519 has a volumetric capacity of 200 and 279 cm(3) cm(-3) at 298 K and 35 and 80 bar, respectively, and MOF-520 has a volumetric capacity of 162 and 231 cm(3) cm(-3) under the same conditions. Furthermore, MOF-519 exhibits an exceptional working capacity, being able to deliver a large amount of methane at pressures between 5 and 35 bar, 151 cm(3) cm(-3), and between 5 and 80 bar, 230 cm(3) cm(-3).

PubMed Disclaimer

Figures

Scheme 1
Scheme 1
Figure 1
Figure 1
MOF-519 and MOF-520 are built from octametallic inorganic SBUs (a) and the organic BTB linker (b). In MOF-519 (c), part of the framework void space is occupied by dangling BTB ligands, which are represented in orange (the framework linkers are represented in gray). There are four of these ligands in each SBU (e). In MOF-520 (d), formate ligands replace the extra BTB ligands in the SBU (f), resulting larger pores.
Figure 2
Figure 2
MOF-519 and MOF-520 show high total methane volumetric uptake. For comparison, bulk density of methane is represented as broken curve. Filled markers represent adsorption points, and empty markers represent desorption points.
Figure 3
Figure 3
Comparison of the working capacity for MOF-519, MOF-520, the top performing MOFs, and the porous carbon AX-21. Values are calculated as the difference between the uptake at 35 bar (blue) or 80 bar (orange) and the uptake at 5 bar. As a reference, the working capacity for bulk methane data are overlaid. Data for MOF-177, MOF-5, MOF-205, and MOF-210 were obtained from ref (9), and data for HKUST-1, PCN-24, Ni-MOF-74, and AX-21 were obtained from ref (6a).

References

    1. Methane Opportunities for Vehicular Energy, Advanced Research Project Agency – Energy, U.S. Dept. of Energy, Funding Opportunity No. DE-FOA-0000672, 2012. https://arpa-e-foa.energy.gov/Default.aspx?Search=DE-FOA-0000672 (accessed on March 17, 2014).
    1. Furukawa H.; Cordova K. E.; O’Keeffe M.; Yaghi O. M. Science 2013, 341, 974. - PubMed
    2. Science 2013, 341, 1230444. - PubMed
    3. Cook T. R.; Zheng Y.-R.; Stang P. J. Chem. Rev. 2013, 113, 734. - PMC - PubMed
    4. McKinlay A. C.; Morris R. E.; Horcajada P.; Ferey G.; Gref R.; Couvreur P.; Serre C. Angew. Chem., Int. Ed. 2010, 49, 6260. - PubMed
    5. Mueller U.; Schubert M.; Teich F.; Puetter H.; Schierle-Arndt K.; Pastre J. J. Mater. Chem. 2006, 16, 626.
    6. Shimizu G. K. H.; Vaidhyanathan R.; Taylor J. M. Chem. Soc. Rev. 2009, 38, 1430. - PubMed
    7. Corma A.; Garcia H.; Llabres i Xamena F. X. Chem. Rev. 2010, 110, 4606. - PubMed
    8. Meek S. T.; Greathouse J. A.; Allendorf M. D. Adv. Mater. 2011, 23, 249. - PubMed
    9. Kitagawa S.; Kitaura R.; Noro S. Angew. Chem., Int. Ed. 2004, 43, 2334. - PubMed
    1. Murray L. J; Dincă M.; Long J. R. Chem. Soc. Rev. 2009, 38, 1294. - PubMed
    2. Suh M.; Park H.; Prasad T.; Lim D. Chem. Rev. 2012, 112, 782. - PubMed
    3. Caskey S. R.; Wong-Foy A. G.; Matzger A. J. J. Am. Chem. Soc. 2008, 130, 10870. - PubMed
    4. Lin X.; Jia J.; Zhao X.; Thomas K. M.; Blake A. J.; Walker G. S.; Champness N. R.; Hubberstey P.; Schroeder M. Angew. Chem., Int. Ed. 2006, 45, 7358. - PubMed
    5. Yang S.; Lin X.; Lewis W.; Suyetin M.; Bichoutskaia E.; Parker J. E.; Tang C. C.; Allan D. R.; Rizkallah P. J.; Hubberstey P.; Champness N. R.; Thomas K. M.; Blake A. J.; Schröeder M. Nat. Mater. 2012, 11, 710. - PubMed
    6. Xiang S.; He Y.; Zhang Z.; Wu H.; Zhou W.; Krishna R.; Chen B. Nat. Commun. 2012, 3, 956. - PubMed
    7. Li T.; Chen D.-L.; Sullivan J. E.; Kozlowski M. T.; Johnson J. K.; Rosi N. L. Chem. Sci. 2013, 4, 1746.
    1. Noro S.; Kitagawa S.; Kondo M.; Seki K. Angew. Chem., Int. Ed. 2000, 39, 2082. - PubMed
    2. Eddaoudi M.; Kim J.; Rosi N.; Vodak D.; Wachter J.; O’Keeffe M.; Yaghi O. M. Science 2002, 295, 469. - PubMed
    3. Makal T.; Li J.; Lu W.; Zhou H. Chem. Soc. Rev. 2012, 41, 7761. - PubMed
    4. Konstas K.; Osl T.; Yang Y.; Batten M.; Burke N.; Hill A. J.; Hill M. R. J. Mater. Chem. 2012, 22, 16698.
    5. Stoeck U.; Krause S.; Bon V.; Senkovska I.; Kaskel S. Chem. Commun. 2012, 48, 10841. - PubMed
    1. Chui S. S.-Y.; Lo S. M.-F.; Charmant J. P. H.; Orpen A. G.; Williams I. D. Science 1999, 283, 1148. - PubMed

Publication types