Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct;5(4):144-8.
doi: 10.4103/0974-777X.121996.

Nonfermenting Gram-negative Bacilli other than Pseudomonas aeruginosa and Acinetobacter Spp. Causing Respiratory Tract Infections in a Tertiary Care Center

Affiliations

Nonfermenting Gram-negative Bacilli other than Pseudomonas aeruginosa and Acinetobacter Spp. Causing Respiratory Tract Infections in a Tertiary Care Center

Kiran Chawla et al. J Glob Infect Dis. 2013 Oct.

Abstract

Background: Nonfermenting gram-negative bacilli have emerged as important healthcare-associated pathogens. It is important to correctly identify all clinically significant nonfermenting gram-negative bacilli considering the intrinsic multidrug resistance exhibited by these bacteria.

Materials and methods: A retrospective study was undertaken to identify the various nonfermenting gram-negative bacilli other than Pseudomonas aeruginosa and Acinetobacter spp. isolated from respiratory samples (n = 9363), to understand their clinical relevance and to analyze their antibiotic susceptibility pattern.

Results: Nonfermenting gram-negative bacilli were isolated from 830 (16.4%) samples showing significant growth. Thirty-three (4%) isolates constituted nonfermenting gram-negative bacilli other than P. aeruginosa and Acinetobacter spp. Stenotrophomonas maltophilia (15, 45.5%) was the most common isolate followed by Burkholderia cepacia (4, 12.1%), Sphingomonas paucimobilis (3, 9.1%), and Achromobacter xylosoxidans (3, 9.1%). On the basis of clinicomicrobiological correlation, pathogenicity was observed in 69.7% (n = 23) isolates. Timely and correct treatment resulted in clinical improvement in 87.9% cases.

Conclusion: Any nonfermenting gram-negative bacilli isolated from respiratory tract infection should not be ignored as mere contaminant, but correlated clinically for its pathogenic potential and identified using standard methods so as to institute appropriate and timely antibiotic coverage.

Keywords: Intrinsic resistance; Nonfermenting gram-negative bacilli; S. maltophilia.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest: None declared.

Similar articles

Cited by

References

    1. McGowan JE., Jr Resistance in nonfermenting gram-negative bacteria: Multidrug resistance to the maximum. Am J Med. 2006;119(6 Suppl 1):S29–36. - PubMed
    1. Mellmann A, Bimet F, Bizet C, Borovskaya AD, Drake RR, Eigner U, et al. High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. J Clin Microbiol. 2009;47:3732–4. - PMC - PubMed
    1. Fass RJ, Barnishan J, Solomon MC, Ayers LW. In vitro activities of quinolones, beta-lactams, tobramycin, and trimethoprim-sulfamethoxazole against nonfermentative gram-negative bacilli. Antimicrob Agents Chemother. 1996;40:1412–8. - PMC - PubMed
    1. Bartlett RG. Medical microbiology: Quality, costs and clinical relevance. New York: John Wiley and Sons, Inc; 1974. pp. 24–31.
    1. Chastre J, Combes A, Luyt CE. The invasive (quantitative) diagnosis of ventilator-associated Pneumonia. Respir Care. 2005;50:797–807. - PubMed