Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2014 Jun 5;467(1-2):9-18.
doi: 10.1016/j.ijpharm.2014.03.045. Epub 2014 Mar 24.

Biomimetic synthesized nanoporous silica@poly(ethyleneimine)s xerogel as drug carrier: characteristics and controlled release effect

Affiliations
Comparative Study

Biomimetic synthesized nanoporous silica@poly(ethyleneimine)s xerogel as drug carrier: characteristics and controlled release effect

Jing Li et al. Int J Pharm. .

Abstract

The purpose of this study was to prepare and characterize nanoporous silica@poly(ethyleneimine)s (NS@P) xerogel and methanol modified NS@P xerogel synthesized with biomimetic method, and investigate controlled release behavior of propranolol hydrochloride (PNH) loaded carrier materials in vitro and in vivo. Preparation was conducted at ambient conditions, and NS@P xerogel as well as PNH loaded NS@P xerogel were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). Investigations on morphology and porous characteristics of NS@P xerogel and methanol modified NS@P xerogel were evaluated with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The results showed that the order of morphology compactness was NS@P xerogel>25%NS@P xerogel>75%NS@P xerogel because PEIs scaffold ability for silica condensation and forming hydrogen bond weakened with increasing volume ratio of methanol modification. Moreover, SBET decreased and uniformity of pore size distribution was interrupted after methanol modification. PNH loaded carrier materials displayed controlled release, and release effect was related with pore size of materials and PEIs scaffold ability. In vivo pharmacokinetic study demonstrated that release of PNH was delayed due to the PNH incorporated inside carrier materials and controlled release effect was in accordance with in vitro results.

Keywords: Biomimetic synthesis; Characteristics; Controlled release; In vivo; Silica@poly(ethyleneimine)s.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources