Broadly reactive human CD8 T cells that recognize an epitope conserved between VZV, HSV and EBV
- PMID: 24675761
- PMCID: PMC3968128
- DOI: 10.1371/journal.ppat.1004008
Broadly reactive human CD8 T cells that recognize an epitope conserved between VZV, HSV and EBV
Abstract
Human herpesviruses are important causes of potentially severe chronic infections for which T cells are believed to be necessary for control. In order to examine the role of virus-specific CD8 T cells against Varicella Zoster Virus (VZV), we generated a comprehensive panel of potential epitopes predicted in silico and screened for T cell responses in healthy VZV seropositive donors. We identified a dominant HLA-A*0201-restricted epitope in the VZV ribonucleotide reductase subunit 2 and used a tetramer to analyze the phenotype and function of epitope-specific CD8 T cells. Interestingly, CD8 T cells responding to this VZV epitope also recognized homologous epitopes, not only in the other α-herpesviruses, HSV-1 and HSV-2, but also the γ-herpesvirus, EBV. Responses against these epitopes did not depend on previous infection with the originating virus, thus indicating the cross-reactive nature of this T cell population. Between individuals, the cells demonstrated marked phenotypic heterogeneity. This was associated with differences in functional capacity related to increased inhibitory receptor expression (including PD-1) along with decreased expression of co-stimulatory molecules that potentially reflected their stimulation history. Vaccination with the live attenuated Zostavax vaccine did not efficiently stimulate a proliferative response in this epitope-specific population. Thus, we identified a human CD8 T cell epitope that is conserved in four clinically important herpesviruses but that was poorly boosted by the current adult VZV vaccine. We discuss the concept of a "pan-herpesvirus" vaccine that this discovery raises and the hurdles that may need to be overcome in order to achieve this.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures






References
-
- Fields BN, Knipe DM, Howley PM, editors (2007) Fields' Virology. London: Wolters Kluwer/Lippincott Williams & Wilkins. 2664 p.
-
- Wilson A, Sharp M, Koropchak CM, Ting SF, Arvin AM (1992) Subclinical Varicella-Zoster Virus Viremia, Herpes Zoster, and T Lymphocyte Immunity to Varicella-Zoster Viral Antigens after Bone Marrow Transplantation. J Infect Dis 165: 119–126. - PubMed
-
- Mehta SK, Cohrs RJ, Forghani B, Zerbe G, Gilden DH, et al. (2004) Stress-induced subclinical reactivation of varicella zoster virus in astronauts. Journal of Medical Virology 72: 174–179. - PubMed
-
- Papaevangelou V, Quinlivan M, Lockwood J, Papaloukas O, Sideri G, et al. (2013) Subclinical VZV reactivation in immunocompetent children hospitalized in the ICU associated with prolonged fever duration. Clin Microbiol Infect 19: E245–51. - PubMed
-
- Weinberg A, Levin MJ (2010) VZV T cell-mediated immunity. Curr Top Microbiol Immunol 342: 341–357. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials