Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Mar 29:14:38.
doi: 10.1186/1471-2415-14-38.

Adjusted color probability codes for peripapillary retinal nerve fiber layer thickness in healthy Koreans

Affiliations

Adjusted color probability codes for peripapillary retinal nerve fiber layer thickness in healthy Koreans

Samin Hong et al. BMC Ophthalmol. .

Abstract

Background: Though a newly developed spectral domain optical coherence tomography (OCT) is at the center of interests for many ophthalmologic researchers and clinicians, its own characteristics are not fully evaluated yet. The main purpose of this study was to establish the adjusted color probability codes for peripapillary retinal nerve fiber layer (RNFL) thickness in healthy Koreans and to compare them with original color codes provided by spectral domain OCT.

Methods: Two hundred ninety-five healthy Korean eyes were enrolled and their peripapillary RNFL thickness was measured by Cirrus OCT. For each decade of age, the normal thickness reference was determined on the basis of z-scores and the adjusted color probability codes were established. Then the agreements between adjusted and original color codes were calculated using weighted Kappa (Kw) coefficient.

Results: On the basis of Kw coefficient, the overall agreement between the adjusted and original probability color codes was not excellent (Kw range of 0.500 to 0.806). If the adjusted probability codes were assumed as a standard of comparison, the original color codes showed the false-negative in 11% of eyes and the false-positive in 0.3% of eyes for average RNFL thickness.

Conclusions: Adjusted color probability codes judged by the Korean normative data showed a discrepancy with original codes. It implies that normal reference and adjusted probability codes for each ethnicity might be needed to determine whether a certain RNFL thickness is within normal range or not.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Adjusted probability codes obtained on the basis of each z-score for a one-tailed normal probability of 5% (z = 1.645) and 1% (z = 2.327). μ = mean; σ = standard deviation.
Figure 2
Figure 2
Peripapillary retinal nerve fiber layer thickness according to age in healthy Koreans. Asterisks indicate statistically significant differences (p < 0.050).
Figure 3
Figure 3
Normal distributions of retinal nerve fiber layer thickness in each decade of age for the Korean population.
Figure 4
Figure 4
Theoretical causes of the discrepancy between adjusted and original probability codes: the means (A) or standard deviations (B) might be different.

References

    1. Tuulonen A, Airaksinen PJ, Erola E, Forsman E, Friberg K, Kaila M, Klemetti A, Mäkelä M, Oskala P, Puska P, Suoranta L, Teir H, Uusitalo H, Vainio-Jylhä E, Vuori ML. The Finnish evidence-based guideline for open-angle glaucoma. Acta Ophthalmol Scand. 2003;81:3–18. doi: 10.1034/j.1600-0420.2003.00021.x. - DOI - PubMed
    1. Weinreb RN, Zangwill L, Berry CC, Bathija R, Sample PA. Detection of glaucoma with scanning laser polarimetry. Arch Ophthalmol. 1998;116:1583–1589. doi: 10.1001/archopht.116.12.1583. - DOI - PubMed
    1. Zangwill LM, Williams J, Berry CC, Knauer S, Weinreb RN. A comparison of optical coherence tomography and retinal nerve fiber layer photography for detection of nerve fiber layer damage in glaucoma. Ophthalmology. 2000;107:1309–1315. doi: 10.1016/S0161-6420(00)00168-8. - DOI - PubMed
    1. Bagga H, Greenfield DS, Feuer W, Knighton RW. Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in normal and glaucomatous eyes. Am J Ophthalmol. 2003;135:521–529. doi: 10.1016/S0002-9394(02)02077-9. - DOI - PubMed
    1. Reus NJ, Colen TP, Lemij HG. Visualization of localized retinal nerve fiber layer defects with the GDx with individualized and with fixed compensation of anterior segment birefringence. Ophthalmology. 2003;110:1512–1516. doi: 10.1016/S0161-6420(03)00479-2. - DOI - PubMed

Publication types

LinkOut - more resources