Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Apr 15;264(11):6566-71.

Ammonium chloride alters secretory protein sorting within the maturing exocrine storage compartment

Affiliations
  • PMID: 2467913
Free article

Ammonium chloride alters secretory protein sorting within the maturing exocrine storage compartment

M von Zastrow et al. J Biol Chem. .
Free article

Abstract

Addition of 20 mM ammonium chloride during in vitro chase incubation of [35S]methionine pulse-labeled parotid tissue does not perturb the magnitude or radiochemical composition of secretion stimulated by isoproterenol. An apparent inhibition of stimulated output of radiolabeled secretory proteins that was observed when ammonium chloride was added immediately postpulse (but not at later time points prior to stimulation) could be accounted for by slowdown in Golgi transit of exocrine secretory protein at a stage prior to completion of terminal glycosylation. Thus, ammonium chloride does not block entry of newly synthesized secretory proteins into the secretagogue-releasable storage granule compartment. By contrast, ammonium chloride increases the output and substantially alters the relative composition of newly synthesized protein in unstimulated secretion. The latter effects could be assigned to stages of intracellular transport that normally occur at chase times greater than 60 min postpulse and thus are focused within the maturing acinar storage granule. Notably, the compositional alterations cannot reflect the preferential exocytosis of immature granules. Taken together, these results suggest that the sorting of exocrine secretory proteins into the secretagogue-regulated pathway may not involve positive selection by a pH-based process initiated in a pregranule compartment. Rather, unstimulated secretion may arise by a negative sorting (or exclusion) process that occurs during compaction of proteins for storage within maturing granules and that is perturbed by weak base addition. Sorted (or excluded) proteins would appear to follow the vesicular (nongranular) secretory pathway that originates in maturing granules (von Zastrow, M., and Castle, J.D. (1987) J. Cell Biol. 105, 2675-2684).

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources