Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May 15:272:83-8.
doi: 10.1016/j.jhazmat.2014.03.013. Epub 2014 Mar 18.

Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)

Affiliations

Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)

Jihai Shao et al. J Hazard Mater. .

Abstract

Cyanobacterial biomass shows high adsorption capacity toward heavy metal ions. However, the cyanotoxins in the cyanobacterial biomass inhibit its application in heavy metals removal. In order to safely and effectively remove Cd(II) from water using cyanobacterial bloom-derived biomass (CBDB), KMnO4 was used to modify CBDB. The results indicated that the microcystins in the CBDB were successfully removed by KMnO4. Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB, and formed manganese dioxide on the surface of CBDB. The oxidized CBDB showed higher adsorption capacity toward Cd(II) than that of unoxidized treatment. The optimal KMnO4 concentration for increasing the adsorption capacity of CBDB toward Cd(II) was 0.2g/L. The adsorption isotherm of Cd(II) by oxidized- or unoxidized-CBDB was well fitted by Langmuir model, indicating that the adsorption of Cd(II) by CBDB was monolayer adsorption. The desorption ratio of Cd(II) from oxidized CBDB was higher than that from unoxidized CBDB in the desorption process using NH4NO3 and EDTA as desorbent. The results presented in this study suggest that KMnO4 modified CBDB may be used as a safe and high efficient adsorbent in Cd(II) removal from water.

Keywords: Adsorption; Cadmium; Cyanobacterial biomass; Cyanobacterial bloom; Manganese dioxide; Microcystins.

PubMed Disclaimer

Publication types

LinkOut - more resources