Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Mar 28;4(3):e197.
doi: 10.1038/bcj.2014.14.

5-Azacytidine treatment sensitizes tumor cells to T-cell mediated cytotoxicity and modulates NK cells in patients with myeloid malignancies

Affiliations

5-Azacytidine treatment sensitizes tumor cells to T-cell mediated cytotoxicity and modulates NK cells in patients with myeloid malignancies

A O Gang et al. Blood Cancer J. .

Abstract

Treatment with the demethylating agent 5-Azacytidine leads to prolonged survival for patients with myelodysplastic syndrome, and the demethylation induces upregulation of cancer-testis antigens. Cancer-testis antigens are well-known targets for immune recognition in cancer, and the immune system may have a role in this treatment regimen. We show here that 5-Azacytidine treatment leads to increased T-cell recognition of tumor cells. T-cell responses against a large panel of cancer-testis antigens were detected before treatment, and these responses were further induced upon initiation of treatment. These characteristics point to an ideal combination of 5-Azacytidine and immune therapy to preferentially boost T-cell responses against cancer-testis antigens. To initiate such combination therapy, essential knowledge is required about the general immune modulatory effect of 5-Azacytidine. We therefore examined potential treatment effects on both immune stimulatory (CD8 and CD4 T cells and Natural Killer (NK) cells) and immune inhibitory cell subsets (myeloid-derived suppressor cells and regulatory T cells). We observed a minor decrease and modulation of NK cells, but for all other populations no effects could be detected. Together, these data support a strategy for combining 5-Azacytidine treatment with immune therapy for potential clinical benefit.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Enhanced direct ex vivo cytotoxicity in patients treated with 5-Azacytidine. CD8 T-cell reactivity upon co-culture with CD34 myeloid blasts is depicted, measured by CD107a expression on the CD8 T cells. T cells and myeloid blasts were isolated from a first cycle sample (pre-treatment) and from a late cycle (4th-6th cycle) sample, separated and co-cultured in four combinations. (a) First cycle T cells against first and late cycle myeloid blasts. (b) Late cycle T cells against first and late cycle myeloid blasts. (c) First and late cycle T cells against first cycle myeloid blasts. (d) First and late cycle T cells against late cycle myeloid blast cells. Note that AZA 14 is only included in (c, d). The frequency of CD107a T cells are given in percentage of CD8 T cells. Significance is indicated by *P<0.05.
Figure 2
Figure 2
Cancer testis antigen (CTA)-specific T cells in the peripheral blood of patients. Detection of CTA- or viral-specific T cells in PBMCs by MHC multimers, expressed in percentage of CD8 T cells. (a) The sum of CTA-specific T cells as measured in peripheral blood at different time points during treatment. Eight patients were tested, results from the six patients with detectable responses are shown. First cycle represents a sample obtained before treatment. The following responses were found for each patient: AZA 1 (SART-3WLE, SART-3QIR, Sp17ILD), AZA 2 (MAGE-A2LVH, MAGE-A2KMV, TAG-1SLG), AZA 4 (MAGE-A2LVH, MAGE-A2LVQ, NY-ESO-1QLS), AZA 5 (MAGE-A1EAD), AZA 12 (MAGE-A2LVH, MAGE-A2KMV, CDCA1KLA, TAG-1SLG, NY-ESO-1SLL, MAGE-A1EAD) and AZA 16 (MAGE-A2LVH, MAGE-A2KMV, GnTVVLP, TAG-1SLG). (b) The frequency of individual CTA-specific T cells detected after an in vitro peptide pre-stimulation was performed at different time points during treatment. (c) The sum of virus-specific T cells detected over the course of treatment. The following responses were detected: AZA 1 (EBVRLR, EBVRLR, FLUILR), AZA 2 (EBVGLC, FLUILR), AZA 4 (EBVGLC, EBVYVL, FLUGIL), AZA 5 (FLUBP-VSD), AZA 12 (CMVVTE, CMVYSE, CMVNLV, FLUGIL), AZA 14 (CMVYSE, CMVVTE, FLUBP-VSD), AZA 16 (CMVNLV, EBVGLC) and AZA 17 (CMVYSE, CMVVTE, FLUBP-VSD). MHC-multimer-specific T cells are given in percentage of CD8 cells. Significance is indicated by *P<0.05.
Figure 3
Figure 3
General immune effector cells are not affected by 5-Azacytidine treatment in vivo. The number and reactivity of NK cells and CD8 and CD4 T cells are shown. First cycle represents a sample obtained before treatment. (a, c, e) absolute peripheral blood counts of CD8 and CD4 T cells and CD3CD56+CD16+/− NK cells, respectively. (b, d, f) Expression of CD107a on CD8 and CD4 T cells and NK cells, respectively, in response to SEB (for T cells) or to K562 cells (for NK cells).
Figure 4
Figure 4
Functional capabilities of NK cells affected by 5-Azacytidine in vivo and in vitro. The number and functional activity of NK cells, when further divided in subsets and measured over a longer treatment period, and the in vivo and in vitro impact of 5-Azacytidine on NK-cell functionality. (a) Absolute peripheral blood counts of CD3CD56+CD16+ NK cells, P=0.061 for first versus late cycle. (b) Absolute peripheral blood counts of NK cells with the inhibitory phenotype CD3CD56+CD16+CD158b+. (c) Absolute peripheral blood counts of NK cells with the activating phenotype CD3CD56+CD16+CD158d+. (d) NK cell-mediated killing of K562 cells after 5-Azacytidine addition, either once, or every 24 h (circles, 5-Aza continuous addition) or only at the initiation of the 72 h culturing period (triangles, 5-Aza one addition). Analyses were performed on two healthy donors (black and gray symbols, respectively). K562 killing was determined by a flow cytometry-based NK cell-killing capacity assay. NK cell-mediated killing of K562 cells was compared to a negative control with no effector cells present and killing of a HLA-A3 transduced K562 line. Counts are given in 106 cells/l of blood. First cycle represents samples obtained before treatment. Significance is indicated by *P<0.05.
Figure 5
Figure 5
Inhibitory cell subsets are not affected by 5-Azacytidine treatment in vivo. Analyses of Tregs and monocytic MDSCs during 5-Azacytidine treatment are shown. (a) Absolute peripheral blood counts of CD4+CD25+CD127FOXP3+CD49d Tregs over the course of treatment. (b) Absolute peripheral blood counts of CD3CD19CD56HLA-DRCD33+CD11b+CD14highCD15low monocytic MDSCs over the course of treatment. Counts are given in 106 cells/l of blood. First cycle represents samples obtained before treatment.

References

    1. Silverman LR, McKenzie DR, Peterson BL, Holland JF, Backstrom JT, Beach CL, et al. Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol. 2006;24:3895–3903. - PubMed
    1. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20:2429–2440. - PubMed
    1. Fenaux P, Mufti GJ, Hellström-Lindberg E, Santini V, Gattermann N, Germing U, et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol. 2010;28:562–569. - PubMed
    1. Adès L, Sekeres MA, Wolfromm A, Teichman ML, Tiu RV, Itzykson R, et al. Predictive factors of response and survival among chronic myelomonocytic leukemia patients treated with azacitidine. Leuk Res. 2013;37:609–613. - PubMed
    1. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10:223–232. - PMC - PubMed