Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014:811:73-91.
doi: 10.1007/978-94-017-8739-0_5.

Nanoparticles: cellular uptake and cytotoxicity

Affiliations
Review

Nanoparticles: cellular uptake and cytotoxicity

Isaac M Adjei et al. Adv Exp Med Biol. 2014.

Abstract

Understanding the interactions of nanoparticles (NPs) with cells and how these interactions influence their cellular uptake is essential to exploring the biomedical applications of NPs, particularly for drug delivery. Various factors, whether differences in physical properties of NPs or variations in cell-membrane characteristics, influence NP-cell interactions and uptake processes. NP-cell membrane interactions may also influence intracellular trafficking of NPs, their sorting into different intracellular compartments, cellular retention, and hence the efficacy of encapsulated therapeutics. A crucial consideration is whether such interactions might cause any toxicity, starting with how NPs interact in transit with the biological environment prior to their interactions with targeted cells and tissues. Understanding the effects of various NP characteristics on cellular and biological processes could help in designing NPs that are efficient but also nontoxic.

PubMed Disclaimer

LinkOut - more resources