Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr 23;136(16):6123-35.
doi: 10.1021/ja501988b. Epub 2014 Apr 14.

Redox-neutral α-oxygenation of amines: reaction development and elucidation of the mechanism

Affiliations

Redox-neutral α-oxygenation of amines: reaction development and elucidation of the mechanism

Matthew T Richers et al. J Am Chem Soc. .

Abstract

Cyclic secondary amines and 2-hydroxybenzaldehydes or related ketones react to furnish benzo[e][1,3]oxazine structures in generally good yields. This overall redox-neutral amine α-C-H functionalization features a combined reductive N-alkylation/oxidative α-functionalization and is catalyzed by acetic acid. In contrast to previous reports, no external oxidants or metal catalysts are required. Reactions performed under modified conditions lead to an apparent reductive amination and the formation of o-hydroxybenzylamines in a process that involves the oxidation of a second equivalent of amine. A detailed computational study employing density functional theory compares different mechanistic pathways and is used to explain the observed experimental findings. Furthermore, these results also reveal the origin of the catalytic efficiency of acetic acid in these transformations.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Selected Previous Approaches to N,O-Acetals and Aminals
Scheme 2
Scheme 2. Initial Studies on N,O-Acetal Formation
Scheme 3
Scheme 3. Potential Reaction Pathways and Experimental Support
Scheme 4
Scheme 4. Variation of Salicylaldehyde Moiety
All reactions were performed on a 1 mmol scale. bFor this reaction, 1 mmol of amine, 2 equiv of ketone, and xylenes (0.1 M) were used.
Scheme 5
Scheme 5. Variation of Secondary Amine
All reactions were performed on a 1 mmol scale. bFor these reactions, 1 mmol of amine, 2 equiv of aldehyde or ketone, and xylenes (0.1 M) were used.
Scheme 6
Scheme 6. Reaction of Salicylaldehyde with 1-Methyltetrahydroisoquinoline
Scheme 7
Scheme 7. Effect of Water on Condensation Reaction
Scheme 8
Scheme 8. Possible Mechanistic Pathways for Formation of N,O-Acetal 2f and Benzylamine 8f
Figure 1
Figure 1
Temperature-dependent 1H NMR spectra of 2l in CDCl3 (400 MHz).
Scheme 9
Scheme 9. Proposed Mechanism of Maycock and Co-workers for Oxidative N,O-Acetal Formation
Figure 2
Figure 2
Free energy profile [in kcal·mol–1, M06-2X-D3/def2-TZVPP/IEFPCM//TPSS-D2/6-31+G(d,p)/IEFPCM] for uncatalyzed (black) and acetic-acid-catalyzed (red) transformation of 7 and THIQ to benzoxazine 2f in toluene.
Figure 3
Figure 3
Calculated structures [M06-2X-D3/def2-TZVPP/IEFPCM//TPSS-D2/6-31+G(d,p)/IEFPCM], relative free energies (in kcal·mol–1), selected bond lengths (in Å), and dihedrals for different conformers of transition state TS1 and zwitterion 17f.
Figure 4
Figure 4
Calculated structures [M06-2X-D3/def2-TZVPP/IEFPCM//TPSS-D2/6-31+G(d,p)/IEFPCM], relative free energies (in kcal·mol–1), selected bond lengths (in Å), and selected NBO charges for transition state TS2.
Figure 5
Figure 5
Calculated structures [M06-2X-D3/def2-TZVPP/IEFPCM//TPSS-D2/6-31+G(d,p)/IEFPCM], relative free energies (in kcal·mol–1), and selected bond lengths (in Å) for transition state TS3.
Figure 6
Figure 6
Calculated activation and reaction free energies of different pathways involving the azomethine ylide 19f [M06-2X-D3/def2-TZVPP/IEFPCM//TPSS-D2/6-31+G(d,p)/IEFPCM] and transition state RSS-TS4 with selected bond lengths (in Å).
Scheme 10
Scheme 10. Potential Acceleration of Acetic Acid (cf. Ref (21))
Figure 7
Figure 7
Calculated transition state TS6 with selected bond lengths (in Å) and activation and reaction free energies (in kcal·mol–1) for an intermolecular reduction of the intermediate zwitterion 10f by THIQ [M06-2X-D3/def2-TZVPP/IEFPCM//TPSS-D2/6-31+G(d,p)/IEFPCM].
Figure 8
Figure 8
Calculated potential energy surface scan for the putative retro-hetero-Diels–Alder reaction involving 2f [in kcal·mol–1, TPSS-D2/6-31G(d)/IEFPCM].

Similar articles

Cited by

References

    1. Kennedy J. P.; Williams L.; Bridges T. M.; Daniels R. N.; Weaver D.; Lindsley C. W. J. Comb. Chem. 2008, 10, 345. - PubMed
    2. Huggins D. J.; Venkitaraman A. R.; Spring D. R. ACS Chem. Biol. 2011, 6, 208. - PMC - PubMed
    1. Nonato M. G.; Garson M. J.; Truscott R. J. W.; Carver J. A. Phytochemistry (Elsevier) 1993, 34, 1159.
    2. Langer P.; Frackenpohl J.; Hoffmann H. M. R. J. Chem. Soc., Perkin Trans. 1 1998, 801.
    3. Heys L.; Moore C. G.; Murphy P. J. Chem. Soc. Rev. 2000, 29, 57.
    4. Troast D. M.; Porco J. A. Jr. Org. Lett. 2002, 4, 991. - PubMed
    5. Jiang X.; Garcia-Fortanet J.; De Brabander J. K. J. Am. Chem. Soc. 2005, 127, 11254. - PubMed
    6. Kock M.; Grube A.; Seiple I. B.; Baran P. S. Angew. Chem., Int. Ed. 2007, 46, 6586. - PubMed
    7. Miyashita M. Pure Appl. Chem. 2007, 79, 651.
    8. Sakaguchi K.; Ayabe M.; Watanabe Y.; Okada T.; Kawamura K.; Shiada T.; Ohfune Y. Org. Lett. 2008, 10, 5449. - PubMed
    9. Su S.; Rodriguez R. A.; Baran P. S. J. Am. Chem. Soc. 2011, 133, 13922. - PMC - PubMed
    1. Leonard N. J.; Leubner G. W. J. Am. Chem. Soc. 1949, 71, 3408.
    2. Galinovsky F.; Wagner A.; Weiser R. Monatsh. Chem. 1951, 82, 551.
    3. Shono T.; Matsumura Y.; Tsubata K. J. Am. Chem. Soc. 1981, 103, 1172.
    4. Miao C. K.; Sorcek R.; Jones P. J. Tetrahedron Lett. 1993, 34, 2259.
    5. Ishii A.; Higashiama K.; Mikami K. Synlett 1997, 1381.
    6. Jiang J.; DeVita R. J.; Doss G. A.; Goulet M. T.; Wyvratt M. J. J. Am. Chem. Soc. 1999, 121, 593.
    7. Ferraris D.; Dudding T.; Young B.; Drury W. J.; Lectka T. J. Org. Chem. 1999, 64, 2168.
    8. Veerman J. J. N.; Rutjes F. P. J. T.; van Maarseveen J. H.; Hiemstra H. Tetrahedron Lett. 1999, 40, 6079.
    9. Yamazaki N.; Ito T.; Kibayashi C. Org. Lett. 2000, 2, 465. - PubMed
    10. Cimarelli C.; Palmieri G.; Volpini E. Tetrahedron 2001, 57, 6089.
    11. Kinderman S. S.; Doodeman R.; van Beijma J. W.; Russcher J. C.; Tjen K. C. M. F.; Kooistra T. M.; Mohaselzadeh H.; van Maarseveen J. H.; Hiemstra H.; Schoemaker H. E.; Rutjes F. P. J. T. Adv. Synth. Catal. 2002, 344, 736.
    12. Lu J.; Xu X.; Wang S.; Wang C.; Hu Y.; Hu H. J. Chem. Soc., Perkin Trans. 1 2002, 2900.
    13. Lebouvier N.; Laroche C.; Huguenot F.; Brigaud T. Tetrahedron Lett. 2002, 43, 2827.
    14. Gosselin F.; Roy A.; O’Shea P. D.; Chen C.; Volante R. P. Org. Lett. 2004, 6, 641. - PubMed
    15. Dong Y.; Sun J.; Wang X.; Xu X.; Cao L.; Hu Y. Tetrahedron: Asymmetry 2004, 15, 1667.
    16. Harayama Y.; Yoshida M.; Kamimura D.; Kita Y. Chem. Commun. 2005, 1764. - PubMed
    17. Wang X.; Dong Y.; Sun J.; Xu X.; Li R.; Hu Y. J. Org. Chem. 2005, 70, 1897. - PubMed
    18. Barragan E.; Olivo H. F.; Romero-Ortega M.; Sarduy S. J. Org. Chem. 2005, 70, 4214. - PubMed
    19. Myers E. L.; de Vries J. G.; Aggarwal V. K. Angew. Chem., Int. Ed. 2007, 46, 1893. - PubMed
    20. Peterson A. E.; Jacobsen E. N. Angew. Chem., Int. Ed. 2009, 48, 6328. - PMC - PubMed
    21. Othman R. B.; Affani R.; Tranchant M. J.; Antoniotti S.; Dalla V.; Dunach E. Angew. Chem., Int. Ed. 2010, 49, 776. - PubMed
    22. Chen G.; Wang X.; Su D.; Liu H.; Liu F.; Hu Y. J. Org. Chem. 2010, 75, 1911. - PubMed
    23. Peixoto S.; Nguyen T. M.; Crich D.; Delpech B.; Marazano C. Org. Lett. 2010, 12, 4760. - PubMed
    24. Zhang W.; Dai Y.; Wang X.; Zhang W. Tetrahedron Lett. 2011, 52, 6122.
    25. Jurberg I. D.; Peng B.; Wostefeld E.; Wasserloos M.; Maulide N. Angew. Chem., Int. Ed. 2012, 51, 1950. - PubMed
    26. Shi S. L.; Wei X. F.; Shimizu Y.; Kanai M. J. Am. Chem. Soc. 2012, 134, 17019. - PubMed
    1. Zhang P.; Terefenko E. A.; Fensome A.; Zhang Z.; Zhu Y.; Cohen J.; Winneker R.; Wrobel J.; Yardley J. Bioorg. Med. Chem. Lett. 2002, 12, 787. - PubMed
    2. Zhang P.; Terefenko E. A.; Fensome A.; Wrobel J.; Winneker R.; Zhang Z. Bioorg. Med. Chem. Lett. 2003, 13, 1313. - PubMed
    1. Chylinska J. B.; Janoiec M.; Urbanski T. Br. J. Pharmacol. 1971, 43, 649. - PMC - PubMed
    2. Scoda J.; Votruba I.; Farkas J. Biochem. Pharmacol. 1979, 28, 1837. - PubMed
    3. Latif N.; Mishriky N.; Assad F. M. Aust. J. Chem. 1982, 35, 1037.
    4. Waisser K.; Gregor J.; Kubicova L.; Klimesova V.; Kunes J.; Machacek M.; Kaustova J. Eur. J. Med. Chem. 2000, 35, 733. - PubMed
    5. Petrlikova E.; Waisser K.; Divisova H.; Husakova P.; Vrabcova P.; Kunes J.; Kolar K.; Stolarikova J. Bioorg. Med. Chem. 2010, 18, 8178. - PubMed
    6. Kategaonkar A. H.; Sonar S. S.; Pokalwar R. U.; Kategaonkar A. H.; Shingate B. B.; Shingare M. S. Bull. Korean Chem. Soc. 2010, 31, 1657.
    7. Mathew B. P.; Kumar A.; Sharma S.; Shukla P. K.; Nath M. Eur. J. Med. Chem. 2010, 45, 1502. - PubMed

Publication types