Analysis of the population structure of Anaplasma phagocytophilum using multilocus sequence typing
- PMID: 24699849
- PMCID: PMC3974813
- DOI: 10.1371/journal.pone.0093725
Analysis of the population structure of Anaplasma phagocytophilum using multilocus sequence typing
Abstract
Anaplasma phagocytophilum is a Gram-negative obligate intracellular bacterium that replicates in neutrophils. It is transmitted via tick-bite and causes febrile disease in humans and animals. Human granulocytic anaplasmosis is regarded as an emerging infectious disease in North America, Europe and Asia. However, although increasingly detected, it is still rare in Europe. Clinically apparent A. phagocytophilum infections in animals are mainly found in horses, dogs, cats, sheep and cattle. Evidence from cross-infection experiments that A. phagocytophilum isolates of distinct host origin are not uniformly infectious for heterologous hosts has led to several approaches of molecular strain characterization. Unfortunately, the results of these studies are not always easily comparable, because different gene regions and fragment lengths were investigated. Multilocus sequence typing is a widely accepted method for molecular characterization of bacteria. We here provide for the first time a universal typing method that is easily transferable between different laboratories. We validated our approach on an unprecedented large data set of almost 400 A. phagocytophilum strains from humans and animals mostly from Europe. The typability was 74% (284/383). One major clonal complex containing 177 strains was detected. However, 54% (49/90) of the sequence types were not part of a clonal complex indicating that the population structure of A. phagocytophilum is probably semiclonal. All strains from humans, dogs and horses from Europe belonged to the same clonal complex. As canine and equine granulocytic anaplasmosis occurs frequently in Europe, human granulocytic anaplasmosis is likely to be underdiagnosed in Europe. Further, wild boars and hedgehogs may serve as reservoir hosts of the disease in humans and domestic animals in Europe, because their strains belonged to the same clonal complex. In contrast, as they were only distantly related, roe deer, voles and shrews are unlikely to harbor A. phagocytophilum strains infectious for humans, domestic or farm animals.
Conflict of interest statement
References
-
- Dumler JS, Barbet AF, Bekker CPJ, Dasch GA, Palmer GH, et al. (2001) Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. . Int J Syst Evol Microbiol 51: 2145–2165. - PubMed
-
- CDC (2013) Summary of notifiable diseases - United States, 2011. MMWR 60: 1–117. - PubMed
-
- Blanco JR, Oteo JA (2002) Human granulocytic ehrlichiosis in Europe. Clin Microbiol Infect 8: 763–772. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
