Effect of age on regulation of human osteoclast differentiation
- PMID: 24700654
- PMCID: PMC4096781
- DOI: 10.1002/jcb.24792
Effect of age on regulation of human osteoclast differentiation
Abstract
Human skeletal aging is characterized as a gradual loss of bone mass due to an excess of bone resorption not balanced by new bone formation. Using human marrow cells, we tested the hypothesis that there is an age-dependent increase in osteoclastogenesis due to intrinsic changes in regulatory factors [macrophage-colony stimulating factor (M-CSF), receptor activator of NF-κB ligand (RANKL), and osteoprotegerin (OPG)] and their receptors [c-fms and RANK]. In bone marrow cells (BMCs), c-fms (r = 0.61, P = 0.006) and RANK expression (r = 0.59, P = 0.008) were increased with age (27-82 years, n = 19). In vitro generation of osteoclasts was increased with age (r = 0.89, P = 0.007). In enriched marrow stromal cells (MSCs), constitutive expression of RANKL was increased with age (r = 0.41, P = 0.049) and expression of OPG was inversely correlated with age (r = -0.43, P = 0.039). Accordingly, there was an age-related increase in RANKL/OPG (r = 0.56, P = 0.005). These data indicate an age-related increase in human osteoclastogenesis that is associated with an intrinsic increase in expression of c-fms and RANK in osteoclast progenitors, and, in the supporting MSCs, an increase in pro-osteoclastogenic RANKL expression and a decrease in anti-osteoclastogenic OPG. These findings support the hypothesis that human marrow cells and their products can contribute to skeletal aging by increasing the generation of bone-resorbing osteoclasts. These findings help to explain underlying molecular mechanisms of progressive bone loss with advancing age in humans.
Keywords: AGING; MARROW STROMAL CELL; OPG; OSTEOCLAST; RANKL.
© 2014 Wiley Periodicals, Inc.
Figures
References
-
- Abdallah BM, Stilgren LS, Nissen N, Kassem M, Jørgensen HR, Abrahamsen B. Increased RANKL/OPG mRNA ratio in iliac bone biopsies from women with hip fractures. Calcif Tissue Int. 2005;76:90–97. - PubMed
-
- Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O'Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007;282:27285–97. - PMC - PubMed
-
- Atkins GJ, Haynes DR, Graves SE, Evdokiou A, Hay S, Bouralexis S, Findlay DM. Expression of osteoclast differentiation signals by stromal elements of giant cell tumors. J Bone Miner Res. 2000;15:640–649. - PubMed
-
- Bellantuono I, Aldahmash A, Kassem M. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss. Biochim Biophys Acta. 2009;1792:364–370. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
