Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May-Jun;9(3):229-36.
doi: 10.1002/cmmi.1562.

USPIO-loaded red blood cells as a biomimetic MR contrast agent: a relaxometric study

Affiliations
Free article

USPIO-loaded red blood cells as a biomimetic MR contrast agent: a relaxometric study

Adriano Boni et al. Contrast Media Mol Imaging. 2014 May-Jun.
Free article

Abstract

Red blood cells (RBCs) loaded with iron oxide nanoparticles have been proposed as biomimetic constructs with long half-life (ca. 20 days) in the blood compartment and potentially interesting properties (such as relaxivity) as intravascular contrast agents for magnetic resonance imaging. However, the encapsulation of nanoparticles into RBCs might affect their magnetic properties and relaxivity, which may be significantly different from the native suspension. Here, we present a relaxometric study of P904, a novel ultra small iron oxide nanoparticle developed by Guerbet, enclosed in human RBCs. We measured longitudinal (r1 ) and transverse (r2 ) relaxivity over a wide range of Larmor frequencies (0.01-300 MHz) in samples of P904-loaded RBCs, and in control samples with P904 nanoparticles dispersed in blood. Internalization of P904 into RBCs resulted in smaller r1 , and in a very high r2 /r1 ratio (232) at the highest field. Moreover, a shift of the Curie peak to high fields was observed in P904-loaded RBCs, possibly the result of nanoparticle size selection caused by the internalization process. High r2 relaxivity together with a high r2 /r1 ratio and a very long blood half-life make P904-loaded RBCs a promising blood-pool negative contrast agent for MR diagnostic applications.

Keywords: internalization; iron-oxide nanoparticles; red blood cells; relaxivity.

PubMed Disclaimer

Publication types

LinkOut - more resources