Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug 8:188:54-9.
doi: 10.1016/j.virusres.2014.03.026. Epub 2014 Apr 2.

Identification and characterization of a viroid resembling apple dimple fruit viroid in fig (Ficus carica L.) by next generation sequencing of small RNAs

Affiliations

Identification and characterization of a viroid resembling apple dimple fruit viroid in fig (Ficus carica L.) by next generation sequencing of small RNAs

M Chiumenti et al. Virus Res. .

Abstract

Viroids are small (246-401 nt) circular and non coding RNAs infecting higher plants. They are targeted by host Dicer-like enzymes (DCLs) that generate small RNAs of 21-24 nt (sRNAs), which are involved in the host RNA silencing pathways. The accumulation in plant tissues of such viroid-derived small RNAs (vd-sRNAs) is a clear sign of an ongoing viroid infection. In this study, next generation sequencing of a sRNAs library and assembling of the sequenced vd-sRNAs were instrumental for the identification of a viroid resembling apple dimple fruit viroid (ADFVd) in a fig accession. After confirming by molecular methods the presence of this viroid in the fig tree, its population was characterized, showing that the ADFVd master sequence from fig diverges from that of the ADFVd reference variant from apple. Moreover, since this viroid accumulates at a low level in fig, a semi-nested RT-PCR assay was developed for detecting it in other fig accessions. ADFVd seems to have a wider host range than thought before and this poses questions about its epidemiology. A further characterization of ADFVd-sRNAs showed similar accumulation of (+) or (-) vd-sRNAs that mapped on the viroid genome generating hotspot profiles. Moreover, similarly to other nuclear-replicating viroids, vd-sRNAs of 21, 22 and 24 nt in size prevailed in the distribution profiles. Altogether, these data support the involvement of double-stranded RNAs and different DCLs, targeting the same restricted viroid regions, in the genesis of ADFVd-sRNAs.

Keywords: ADFVd; Fig; Molecular detection; Next generation sequencing; Small RNAs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Associated data

LinkOut - more resources